Spelling suggestions: "subject:"singlet molecular oxygen"" "subject:"winglet molecular oxygen""
1 |
Geração de ozônio isotopicamente marcado com átomo de oxigênio-18, (18O3), formando oxigênio-18 molecular singlete, 18O2 (1Δg), e modificações na 2\'- desoxiguanosina / Isotopically labeled ozone, 18O3, generate 18O-labeled singlet molecular oxygen, 18O2 (1Δg), and oxidation of product of the purine moiety of 2\'-deoxyguanosine.Motta, Flavia Daniela 28 July 2011 (has links)
O ozônio (O3) é um poderoso oxidante e quantidades significativas podem ser formadas em ambientes urbanos, como resultado de uma série de eventos fotoquímicos, sendo um risco para a saúde humana. Devido a sua reatividade química, o ozônio é capaz de promover modificações oxidativas em diversas biomoléculas, tais como, DNA, proteínas e lipídios. As reações do O3 com biomoléculas geram quantidades significativas de O2 (1Δg). Sendo assim, essas reações são caracterizadas pela transferência de um átomo de oxigênio do O3 ao substrato oxidado. Devido à regra de conservação do Spin, isto requer que o dioxigênio gerado nesta reação esteja no seu estado singlete. Neste específico mecanismo, a formação do hidrotrióxido tem sido frequentemente assumida como um importante intermediário da ozonização. Ainda, constatou-se o elevado potencial mutagênico do O3 sobre o DNA, levando, principalmente, à substituição de suas bases. A frequência das substituições das bases foi essencialmente localizada no par G: C\'s (75%), uma característica das espécies reativas de oxigênio, como o O2 (1Δg). No entanto, os mecanismos pelos quais O3 causa danos ao DNA ainda não foram completamente elucidados. No presente trabalho, as evidências espectroscópicas na geração do O2 (1Δg) foram obtidas através da emissão de luz bimolecular na região vermelha do espectro (λ = 634 nm) e através da emissão de luz monomolecular na região do infravermelho próximo (λ = 1270 nm ) durante a reação de O3 com dGuo e 8-oxodGuo. Além disso, desenvolveu-se uma metodologia para a geração de ozônio isotopicamente marcado com átomo de oxigênio-18 a partir do 18O2 (3Σg-). Deste modo, as evidências da formação dos diastereoisômeros da spiroiminodihidantoina, tanto a isotopicamente marcada no 18O quanto a não marcada, juntamente com a 8-oxodGuo, imidazolona e oxazolona, foram detectados como produtos de oxidação das reações com 18O3. Para tal observação, análises foram realizadas por HPLC acoplado ao espectrômetro de massas. Ademais, a detecção do 18O2 (1Δg) durante a decomposição do 18O3 foi obtida por captação química do O2 (1Δg) pelo derivado de antraceno, EAS, detectando o endoperóxido corresponde com a adição de dois átomos de 18O na posição 9,10 do antraceno. Além disso, mais uma evidência da presença do O2 (1Δg) foi inequivocamente demonstrada pela caracterização do espectro de emissão no infravermelho próximo. / Ozone (O3) is a potent oxidant and significant amounts can be formed in urban environments as a result of a series of complex photochemical events. It is a threat for human health. Due its chemical reactivity towards biological targets, ozone is able to promote oxidative modification in several biomolecules, such as DNA, proteins and lipids. Reactions of O3 with biomolecules are able to generate in high yields of singlet molecular oxygen [O2 (1Δg)]. The transfer of one oxygen atom from O3 to the oxidized substrate characterizes these reactions. Spin conservation rules require that the dioxygen generated in this reaction has to be in its singlet state. In this specific mechanism, hydrotrioxide has often been assumed as important intermediates in the ozonization process. In addition, ozone has been established as a powerful mutagenic agent, and the most observed mutation is in G:C transversion. This kind of transversion is typical in reactions involving DNA and reactive oxygen species, such as O2 (1Δg). However, the mechanisms by which O3 causes DNA damage have not yet been fully elucidated. In the present research, spectroscopic evidence for the generation of O2 (1Δg) was obtained by measuring the dimol light emission in the red spectral region (λ = 634 nm) and the monomol light emission in the near-infrared region (λ=1270 nm). Both measuements were done during interaction of O3 with dGuo and 8-oxodGuo. In addition, a system was built to produce isotopically labeled ozone with 18O. Thefore, in the same system that 8-oxodGuo, imidazolone and oxazolone, 18O-labeled and unlabeled diastereoisomeric spiroiminodihydantoin nucleosides were detected as the oxidation products with 18O3. In that case, analyses by HPLC coupled to mass spectrometry were performed. Moreover, in the O3 decomposition the formation of 18O-labeled O2 (1Δg) from 18O-labeled ozone was obtained by chemical trapping of O2 (1Δg) with EAS anthracene derivative and detected the corresponding 18O-labeled EAS endoperoxide. More evidence of the presence of O2 (1Δg) was unequivocally demonstrated by the direct characterization of the near-infrared light emission spectrum.
|
2 |
Geração de ozônio isotopicamente marcado com átomo de oxigênio-18, (18O3), formando oxigênio-18 molecular singlete, 18O2 (1Δg), e modificações na 2\'- desoxiguanosina / Isotopically labeled ozone, 18O3, generate 18O-labeled singlet molecular oxygen, 18O2 (1Δg), and oxidation of product of the purine moiety of 2\'-deoxyguanosine.Flavia Daniela Motta 28 July 2011 (has links)
O ozônio (O3) é um poderoso oxidante e quantidades significativas podem ser formadas em ambientes urbanos, como resultado de uma série de eventos fotoquímicos, sendo um risco para a saúde humana. Devido a sua reatividade química, o ozônio é capaz de promover modificações oxidativas em diversas biomoléculas, tais como, DNA, proteínas e lipídios. As reações do O3 com biomoléculas geram quantidades significativas de O2 (1Δg). Sendo assim, essas reações são caracterizadas pela transferência de um átomo de oxigênio do O3 ao substrato oxidado. Devido à regra de conservação do Spin, isto requer que o dioxigênio gerado nesta reação esteja no seu estado singlete. Neste específico mecanismo, a formação do hidrotrióxido tem sido frequentemente assumida como um importante intermediário da ozonização. Ainda, constatou-se o elevado potencial mutagênico do O3 sobre o DNA, levando, principalmente, à substituição de suas bases. A frequência das substituições das bases foi essencialmente localizada no par G: C\'s (75%), uma característica das espécies reativas de oxigênio, como o O2 (1Δg). No entanto, os mecanismos pelos quais O3 causa danos ao DNA ainda não foram completamente elucidados. No presente trabalho, as evidências espectroscópicas na geração do O2 (1Δg) foram obtidas através da emissão de luz bimolecular na região vermelha do espectro (λ = 634 nm) e através da emissão de luz monomolecular na região do infravermelho próximo (λ = 1270 nm ) durante a reação de O3 com dGuo e 8-oxodGuo. Além disso, desenvolveu-se uma metodologia para a geração de ozônio isotopicamente marcado com átomo de oxigênio-18 a partir do 18O2 (3Σg-). Deste modo, as evidências da formação dos diastereoisômeros da spiroiminodihidantoina, tanto a isotopicamente marcada no 18O quanto a não marcada, juntamente com a 8-oxodGuo, imidazolona e oxazolona, foram detectados como produtos de oxidação das reações com 18O3. Para tal observação, análises foram realizadas por HPLC acoplado ao espectrômetro de massas. Ademais, a detecção do 18O2 (1Δg) durante a decomposição do 18O3 foi obtida por captação química do O2 (1Δg) pelo derivado de antraceno, EAS, detectando o endoperóxido corresponde com a adição de dois átomos de 18O na posição 9,10 do antraceno. Além disso, mais uma evidência da presença do O2 (1Δg) foi inequivocamente demonstrada pela caracterização do espectro de emissão no infravermelho próximo. / Ozone (O3) is a potent oxidant and significant amounts can be formed in urban environments as a result of a series of complex photochemical events. It is a threat for human health. Due its chemical reactivity towards biological targets, ozone is able to promote oxidative modification in several biomolecules, such as DNA, proteins and lipids. Reactions of O3 with biomolecules are able to generate in high yields of singlet molecular oxygen [O2 (1Δg)]. The transfer of one oxygen atom from O3 to the oxidized substrate characterizes these reactions. Spin conservation rules require that the dioxygen generated in this reaction has to be in its singlet state. In this specific mechanism, hydrotrioxide has often been assumed as important intermediates in the ozonization process. In addition, ozone has been established as a powerful mutagenic agent, and the most observed mutation is in G:C transversion. This kind of transversion is typical in reactions involving DNA and reactive oxygen species, such as O2 (1Δg). However, the mechanisms by which O3 causes DNA damage have not yet been fully elucidated. In the present research, spectroscopic evidence for the generation of O2 (1Δg) was obtained by measuring the dimol light emission in the red spectral region (λ = 634 nm) and the monomol light emission in the near-infrared region (λ=1270 nm). Both measuements were done during interaction of O3 with dGuo and 8-oxodGuo. In addition, a system was built to produce isotopically labeled ozone with 18O. Thefore, in the same system that 8-oxodGuo, imidazolone and oxazolone, 18O-labeled and unlabeled diastereoisomeric spiroiminodihydantoin nucleosides were detected as the oxidation products with 18O3. In that case, analyses by HPLC coupled to mass spectrometry were performed. Moreover, in the O3 decomposition the formation of 18O-labeled O2 (1Δg) from 18O-labeled ozone was obtained by chemical trapping of O2 (1Δg) with EAS anthracene derivative and detected the corresponding 18O-labeled EAS endoperoxide. More evidence of the presence of O2 (1Δg) was unequivocally demonstrated by the direct characterization of the near-infrared light emission spectrum.
|
3 |
Hidroperóxido de timina como fonte biológica de oxigênio molecular singlete [O2 (1Δg)] / Thymine hydroperoxide as biological source of singlet molecular oxygen [O2 (1Δg)]Prado, Fernanda Manso 24 November 2009 (has links)
A oxidação do DNA por espécies reativas de oxigênio, como o oxigênio molecular singlete [O2 (1Δg)] , pode estar relacionada ao aparecimento de mutações e ao desenvolvimento de doenças. O O2 (1Δg) pode ser gerado biologicamente por reação de fotossensibilização, pela reação de H2O2 e HOCl e pela decomposição de peróxidos orgânicos contendo hidrogênio alfa (α-ROOH), na presença de metais de transição (Fe2+, Cu2+) ou HOCl. A decomposição de α-ROOH, como hidroperóxidos de lipídeos ou proteínas na presença de metais de transição, pode gerar O2 (1Δg) via mecanismo de Russell. Neste mecanismo, a oxidação de α -ROOH gera radicais peroxila, que podem reagir entre si, formando um intermediário tetraóxido linear. Este intermediário tetraóxido linear pode decompor através de um mecanismo cíclico e produzir O2 (1Δg), um álcool e um composto carbonílico. Como a decomposição de α-ROOH pelo mecanismo de Russell pode ser uma importante fonte biológica de O2 (1Δg) decidimos investigar se o α-hidroperóxido de timina, 5-(hidroperoximetil)uracil (5-HMPU), poderia gerar esta espécie reativa na presença de metais (Ce4+, Fe2+, Cu2+) e HOCl. Outro objetivo foi avaliar os efeitos oxidativos, em DNA plasmidial (pBR322), da decomposição de 5-HPMU na presença de Cu2+. A geração de O2 (1Δg) na reação de 5-HPMU e Ce4+ ou HOCl foi demonstrada por meio do monitoramento da emissão de luz monomolecular de O2 (1Δg) na região do infravermelho próximo (IR-próximo, λ = 1270 nm) e bimolecular na região do visível (λ = 634 e 703 nm). A aquisição do espectro de emissão de O2 (1Δg) forneceu evidências inequívocas da geração desta espécie reativa na reação de 5-HPMU e Ce4+ ou HOCl. Além disto, a formação de O2 (1Δg) na reação de 5-HPMU e Fe2+, Cu2+ ou HOCl foi demonstrada através da captação química de O2 (1Δg) utilizando 9,10- divinilsulfonatoantraceno (AVS) e detecção por HPLC/MS/MS do endoperóxido (AVSO2) formado. A detecção por HPLC/MS/MS dos produtos de decomposição de 5-HPMU, 5- (hidroximetil)uracila (5-HMU) e 5-formiluracila (5-FoU), reforçaram a hipótese de geração de O2 (1Δg) pelo mecanismo de Russell. A análise dos resultados da incubação de pBR322, 5-HPMU e crescente concentração de Cu2+ mostraram o aumento da forma circular aberta (OC), indicando a formação de quebra de fita simples do DNA, provavelmente proveniente da presença dos radicais peroxila e alcoxila de 5-HPMU. Já a utilização das enzimas de reparo FPG e NTH na incubação de pBR322, 5-HPMU e Cu2+ forneceu evidências da formação preferencial de purinas oxidadas, especialmente de 2’-desoxiguanosina (dGuo). O aumento significativo da forma OC na presença de FPG indicou a formação de 8-oxo-2’-desoxiguanosina, resultante da oxidação da dGuo por O2 (1Δg) e/ou pelos radicais derivados de 5-HPMU. Podemos concluir que 5-HPMU pode ser uma importante fonte biológica de O2 (1Δg) . Além disto, a presença de 5-HPMU pode levar a propagação dos danos oxidativos no DNA, pois sua decomposição pode gerar radicais peroxila e alcoxila / Oxidation of DNA by singlet molecular oxygen O2 (1Δg) can be involved in the development of mutations and diseases. In vivo, O2 (1Δg) can be generated by photosensitization reaction, H2O2 and HOCl reaction and decomposition of organic hydroperoxides with α-hydrogen (α-ROOH) in the presence of metal ions (Fe2+, Cu2+) or HOCl. The α-ROOH decomposition, such as lipid or protein hydroperoxides in the presence of metal ions or HOCl can generate O2 (1Δg) by Russell mechanism. In this mechanism, the self-reaction of peroxyl radicals generates a linear tetraoxide intermediate that decomposes to O2 (1Δg) , an alcohol and an aldehyde. Therefore, the purpose of this work is to investigate if O2 (1Δg) can be generated by α-thymine hydroperoxide, 5- (hydroperoxymethyl)uracil (5-HPMU) in the presence of Ce4+, Fe2+, Cu2+ or HOCl. Another purpose is to study base modification and strand breaks formation in plasmid DNA (pBR322) by 5-HPMU decomposition in the presence of Cu2+. The generation of O2 (1Δg) in the reaction of 5- HPMU and Ce4+ or HOCl was monitored by monomol light emission in the near-infrared region (NIR, λ = 1270 nm) and dimol light emission in the visible region (λ = 634 e 703 nm). The generation of O2 (1Δg) during the reaction of 5-HPMU and Ce4+ or HOCl was confirmed by acquisition of the light emission spectrum in the NIR. Furthermore, the generation of O2 (1Δg) produced by 5-HPMU and Fe2+, Cu2+ or HOCl was also confirmed by chemical trapping using anthracene-9,10-divinylsulfonate (AVS) and HPLC/MS/MS detection of the corresponding endoperoxide (AVSO2). The detection by HPLC/MS/MS of 5-(hydroxymethyl)uracil (5-HMU) and 5-formyluracil (5-FoU), two 5-HPMU decomposition products, support the Russell mechanism. Plasmid results from pBR322, 5-HPMU and Cu2+ reaction showed formation of DNA open circular form (OC), probably produced by 5-HPMU peroxyl and alkoxyl radicals. Additionally, the reaction of pBR322, 5-HPMU and Cu2+ following by Fpg and NTH enzyme treatment demonstrated evidences of purine modification, especially 2’-deoxyguanosine (dGuo). The use of FPG enzyme indicated the formation of 8-oxo-7,8-dihydro-2’-deoxyguanosine, a dGuo oxidation product formed by O2 (1Δg) and/or 5-HPMU peroxyl and alkoxyl radicals. We can conclude that 5-HPMU can be a biological source of O2 (1Δg)] and 5-HPMU decomposition can lead to an enhancing of DNA oxidative damage by 5-HPMU peroxyl and alkoxyl radicals formation
|
4 |
Hidroperóxidos de lipídios como fontes de oxigênio molecular singlete (O2 [1Δg]), detecção e danos em biomoléculas / Lipid hidroperoxides as singlet molecular oxygen precursors (O2 [1Δg]), detection and damage to biomoleculesÂngeli, José Pedro Friedmann 21 July 2011 (has links)
O estudo do processo da peroxidação de lipídios tem aumentado nos últimos anos, principalmente devido à implicação dos hidroperóxidos de lipídios (LOOH) em diversos processos patológicos. A decomposição destes LOOH é capaz de gerar subprodutos capazes de promover danos em biomoléculas, incluindo proteínas e DNA. No presente trabalho, utilizando hidroperóxidos de ácido linoléico isotopicamente marcado com átomo de oxigênio-18 (LA18O18OH), fomos capazes de demonstrar que estas moléculas gerararam oxigênio singlete marcado [18(1O2)] em células em cultura. A detecção de tal espécie foi possível através da utilização de uma nova metodologia utilizando um derivado antracenico. Para este propósito foi utilizado o derivado de antraceno 3,3\'-(9,10-antracenodiil) bisacrilato (DADB), cujo produto especifico da reação com o 1O2 (o endoperóxido do DADB DADBO2) do pode ser facilmente detectado por HPLC-MS/MS. De forma a expandir a compreensão dos efeitos tóxicos desses LOOH, investigamos o efeito destes compostos gerados intracelularmente. Para tal, foi utilizado o Rosa bengala (RB), um fotosensibilizador que tem afinidade por espaços apolares como membranas e lisossomos. A fotosenssibilização deste composto foi capaz de induzir a morte celular, e esta morte estaria relacionada a uma maior formação de 1O2 e a um maior acumulo de peróxidos. Nestes estudos foi possível demonstrar que carotenóides e sistemas antioxidantes dependentes de glutationa foram capazes de proteger contra os efeitos tóxicos da fotosensibilização na presença de RB. Adicionalmente foram avaliados os efeitos da hemoglobina (Hb) e do hidroperóxido do ácido linoléico (LAOOH) em uma série de parâmetros toxicológicos, como citotoxicidade, estado redox, a peroxidação lipídica e dano ao DNA. Nós demonstramos que a pré-incubação das células com Hb e sua posterior exposição à LAOOH (Hb + LAOOH) levou a um aumento na morte celular, a oxidação do DCFH, formação de malonaldeído e fragmentação do DNA e que esses efeitos estavam relacionados com o grupo peróxido e ao heme presentes na Hb. Foi demonstrado que as células incubadas com LAOOH e Hb apresentaram um nível maior das lesões de DNA; 8-oxo-7,8-diidro-2 \'desoxiguanosina e 1,N2-etheno-2\'-desoxiguanosina. Além disso, as incubações com Hb levaram a um aumento nos níveis de ferro intracelular, e este alto nível de ferro correlacionada com a oxidação do DNA, avaliadas através da medida de sitios EndoIII e Fpg sensíveis. Nossos resultados comprovam que os LAOOHs apresentaram efeito citotóxico e genotóxico, mesmo em concentrações muito baixas, podendo contribuir para o desencadeamento de processos patologicos como o câncer e doenças cardiovasculares e neurodegenerativas. / The study of the process of lipid peroxidation has increased in recent years, mainly due to the involvement of lipid hydroperoxide (LOOH) in a series of pathological processes. The decomposition of LOOH is able to generate products that can promote damage to biomolecules, including proteins and DNA. In the present work, using linoleic acid hydroperoxide isotopically labeled with 18O2 (LA18O18OH), we demonstrate that these molecules were able to generate labeled singlet oxygen [18(1O2)] in cultured cells. The detection of such species was possible using a new methodology using an anthracene derivative .For this purpose we used the anthracene derivative of 3,3\'-(9,10-antracendiil) bisacrilate (DADB), whose specific reaction product with 1O2 (DADB endoperoxide DADBO2) can be easily detected by HPLC-MS/MS. In order to expand the understanding of the toxic effects of LOOH, we investigated the effect of these compounds generated intracellularly. For this porpoise, we used Rose Bengal (RB), a photosensitizer that has affinity for apolar spaces such as membranes and lysosomes. The photosensitization of this compound was able to induce cell death, and this death was related to increased formation of 1O2 and a higher accumulation of peroxides. In these studies we have shown that carotenoids and glutathione-dependent antioxidant systems were capable of protecting against the toxic effects of photosensitization in the presence of RB. Additionally, we evaluated the effects of hemoglobin (Hb) and linoleic acid hydroperoxide (LAOOH) in a series of toxicological endpoints such as cytotoxicity, redox status, lipid peroxidation and DNA damage. We demonstrated that preincubation of cells with Hb and its subsequent exposure to LAOOH (Hb + LAOOH) led to an increase in cell death, DCFH oxidation, formation of malonaldehyde and DNA fragmentation, and that these effects were related to the peroxide and the heme group. It was demonstrated that cells incubated with LAOOH and Hb showed a higher level of the DNA lesions, 8-oxo-7,8-dihydro-2\'deoxyguanosine and 1,N2-etheno-2\'-deoxyguanosine. Furthermore, incubations with Hb led to an increase in intracellular iron levels, and this high level of iron correlates with the oxidation of DNA, measured as EndoIII and Fpg-sensitive sites. Our results show that the LOOHs showed cytotoxic and genotoxic, even at very low concentrations and may contribute to the onset of chronic malignancies like cancer, cardiovascular and neurodegenerative diseases.
|
5 |
Formação de oxigênio singlete O2 (1Δg) por fagócitos / Singlet oxygen formation O2 (1Δg) by phagocytesGarcia, Flavia 20 October 2005 (has links)
Neste trabalho avaliamos a formação de oxigênio singlete in vitro em fagócitos, (células mononucleares e neutrófilos) isolados de sangue periférico humano, e eosinófilos, de lavado bronco alveolar de camundongos balb/c, ativados por estímulo partículado: zimosan opsonizado contendo o 9,10difenilantraceno (DPA) adsorvido como sonda captadora de 1O2. Por este método, a formação do 1O2 pode ser verificada pela formação do 9,10-difenilantraceno endoperóxido (DPAO2), que é detectado por HPLC. Observamos, que os fagócitos formam 1O2 e que esta formação parece ocorrer de forma diferenciada para os dois tipos celulares (neutrófilos e células mononucleares). Visando ampliar os estudos anteriores sobre o papel da melatonina (MLT) no processo inflamatório, foi testado seu efeito em fagócitos e a relação na produção de 1O2 destas células. Observamos que MLT inibe a formação de 1O2 totalmente no caso de neutrófilos e parcialmente no caso de células mononucleares e eosinófilos. Paralelamente, foi desenvolvida a síntese de um novo captador químico de 1O2, o éster 9,10-antracenil-3-bispropionato de etila (ABPE), cuja finalidade principal é o acúmulo no interior da célula, depois de sofrer hidrólise enzimática. Esta sonda, terá facil acesso ao interior das células em sua forma ester. Este novo captador de 1O2 foi testado em células mononucleares e neutrófilos estimulados de formas diferentes: via receptor independente e dependente. Os resultados demonstraram produção equivalente de 1O2 nestes fagócitos. / In this study, we evaluated the singlet oxygen (1O2) formation in vitro from phagocytes (neutrophils and mononuclear cells) isolated from human blood cells and eosinophils isolated from bronchoalveolar lavage fluid of mice balb/c activated, by opsonized zymosan. To determine whether singlet oxygen is produced by phagocytes, zymosan particles were coated with a specific chemical trap for 1O2, 9,10-diphenylanthracene (DPA). The production of 1O2 was followed using HPLC, to measure its product, 9,10-diphenylanthracene endoperoxide (DPAO2). We also noticed that the 1O2 production occurs at different levels of for two cell types, neutrophils and mononuclear cells. In order to broaden previous studies on the role of melatonin (MLT) in inflammatory processes, its effect was tested in phagocytes was tested in relation to 1O2 formation by these cells. We observed that MLT inhibits the 1O2 formation totallymt neutrophils and partiallym mononuclear cells and eosinophils. At the some time, it was also developed the synthesis of a new probe for 1O2, the 9,10-anthracene-bis-3-ethyl-propionate (ABEP), with the purpose to accumulate inside the cells, after its enzymatic hydrolysis. This probe presents easy acess to the inferior of the cells in its ester form. This new probe for trapping 1O2 was tested in mononuclear cells and neutrophils stimulated in two ways: via independent and dependent receptor. The results showed equivalent production of 1O2 for both cell types.
|
6 |
Investigação de produtos de reação do oxigênio singlete em proteínas por espectrometria de massas e marcação isotópica / Investigation of singlet oxygen reaction products in proteins by mass spectrometry and isotopic labelingMarques, Emerson Finco 01 December 2017 (has links)
O oxigênio molecular singlete (1O2) é formado em sistemas biológicos e reage com diferentes biomoléculas. Proteínas representam um dos principais alvos de oxidação, devido as suas altas concentrações em organismos. Em pH fisiológico 1O2 reage com His, Tyr, Met, Cys e Trp. Neste trabalho investigamos a oxidação causada pelo 1O2 e a formação de dimerização em uma proteína modelo, a lisozima. A identificação dos principais produtos de oxidação e dimerização foi realizada por sequenciamento de peptídeos através de nano cromatografia acoplada a espectrometria de massas (nLC-MS/MS). A geração de 1O2 foi realizada por fotossensibilização utilizando luz e rosa bengala como fotossensibilizador, e pela decomposição térmica de endoperóxidos derivado do naftaleno DHPN16O2 e DHPN18O2, uma fonte limpa de 1O2 no meio reacional. Os resultados demonstraram que a reação do oxigênio singlete com lisozima acarreta oxidação dos resíduos de Met, His e Trp. A caracterização da estrutura primária por nLC-MS/MS dos aminoácidos confirmou a adição de átomos de oxigênio marcado (18O). A lisozima é constituída apenas de um resíduo de histidina (His15) e as oxidações identificadas foram adições de massas de +14 Da (descrita como 2-oxo-histidina), +16 e +32 Da. Os resíduos de metionina (Met12 e Met105) foram identificados como sulfóxidos (MetSO - adição de massas de +16 Da). Para os resíduos de triptofano foram identificados a formação de quinurenina (adição de massas de +4 Da), +16 e +32 Da. As oxidações levaram a formação de dimerização na proteína caracterizada por eletroforese em gel e nLC-MS/MS. O objetivo principal do trabalho foi analisar a ligação cruzada entre o resíduo de histidina 2-oxohistidina na lisozima. Entretanto, foram identificadas ligações cruzadas entre 2- oxo-histidina e resíduos de lisina, além de ligações cruzadas com resíduos de triptofano oxidado. Em consequência dos resultados obtidos com a proteína modelo, avaliamos as oxidações e formação de dímeros em proteínas extraídas do cristalino do olho bovino. Diferentes tipos de modificações foram observados, além da formação de dímeros entre resíduos de histidina (2-oxoHis-His) caracterizados por nLC-MS/MS e bioinformática. Os dados obtidos neste trabalho, fornecem evidências da ocorrência simultânea de formação de ligações cruzadas entre diferentes proteicas após exposição a 1O2. O trabalho resultou na identificação e sequenciamento através de nLC-MS/MS de peptídeos oxidados por 1O2 a partir de uma proteína modelo. Esses resultados reiteram o importante papel do 1O2 em reações com proteínas além do seu envolvimento no desenvolvimento de condições patológicas. A dimerização formada na ligação cruzada em 2-oxo-His-His representa um possível novo biomarcador para o 1O2 em sistemas biológicos / Singlet molecular oxygen (1O2) can be generated in biological systems, reacting with different biomolecules. Proteins are major target for oxidants due to higher concentration in organisms. At physiological pH, 1O2 may react with the following aminoacids: His, Tyr, Met, Cys and Trp. Here, we investigated oxidation and dimerization reactions of proteins exposed to 1O2 using lysozyme as a model. Modifications of lysozyme by 1O2 were investigated using mass spectrometry approaches. Identification of the main oxidation and dimerization products were performed by peptide sequencing by nano-chromatography coupled to mass spectrometry (nLC-MS/MS). Singlet oxygen was generated using visible light and rose Bengal as photosensitizer, and from the decomposition of thermolabile endoperoxides DHPN16O2 e DHPN18O2, clean sources of 1O2. Experimental findings showed oxidation of Met, His, and Trp residuesin lysozyme. Structural characterization by nLC-MS/MS of the oxidative modifications in lysozyme tryptic peptides showed the addition of [18O]-labeled atoms in different amino acid residues. Lysozyme has in its structure a single histidine residue (His15). We identified shifts of +14 Da (described as oxohistidine), +16 and +32 Da in this residue. Methionine residues (Met12 and Met105) were oxidized to sulfoxides (MetSO mass shift of +16 Da). Modifications in tryptophan residues were identified as kynurenine (shift mass of +4 Da), +16 and + 32 Da. Oxidized lysozyme subjected to SDS-Page showed dimmers formation. The main aim was to analyze cross-linking formation between 2-oxo-histidine residues in lysozyme. However, cross-links between 2- oxo-histidine and lysine residues, and cross-links between oxidized tryptophan residues have been identified. Following results obtained with the protein model, we evaluated oxidation and the dimers formation in proteins extracted from the lens of the bovine eye. Analysis performed in nLC-MS/MS and bioinformatics identified different types of modifications, including formation of dimers with histidine residues (2-oxo-His-His). The data provided evidence for simultaneous occurrence of protein cross-linking on exposure 1O2. These results demonstrated the important role of 1O2 in protein reactions beyond its involvement in developing of pathological conditions. In conclusion, dimerization of proteins through 2-oxo-His residues may be a possible new biomarker for 1O2 in biological systems.
|
7 |
Investigação de produtos de reação do oxigênio singlete em proteínas por espectrometria de massas e marcação isotópica / Investigation of singlet oxygen reaction products in proteins by mass spectrometry and isotopic labelingEmerson Finco Marques 01 December 2017 (has links)
O oxigênio molecular singlete (1O2) é formado em sistemas biológicos e reage com diferentes biomoléculas. Proteínas representam um dos principais alvos de oxidação, devido as suas altas concentrações em organismos. Em pH fisiológico 1O2 reage com His, Tyr, Met, Cys e Trp. Neste trabalho investigamos a oxidação causada pelo 1O2 e a formação de dimerização em uma proteína modelo, a lisozima. A identificação dos principais produtos de oxidação e dimerização foi realizada por sequenciamento de peptídeos através de nano cromatografia acoplada a espectrometria de massas (nLC-MS/MS). A geração de 1O2 foi realizada por fotossensibilização utilizando luz e rosa bengala como fotossensibilizador, e pela decomposição térmica de endoperóxidos derivado do naftaleno DHPN16O2 e DHPN18O2, uma fonte limpa de 1O2 no meio reacional. Os resultados demonstraram que a reação do oxigênio singlete com lisozima acarreta oxidação dos resíduos de Met, His e Trp. A caracterização da estrutura primária por nLC-MS/MS dos aminoácidos confirmou a adição de átomos de oxigênio marcado (18O). A lisozima é constituída apenas de um resíduo de histidina (His15) e as oxidações identificadas foram adições de massas de +14 Da (descrita como 2-oxo-histidina), +16 e +32 Da. Os resíduos de metionina (Met12 e Met105) foram identificados como sulfóxidos (MetSO - adição de massas de +16 Da). Para os resíduos de triptofano foram identificados a formação de quinurenina (adição de massas de +4 Da), +16 e +32 Da. As oxidações levaram a formação de dimerização na proteína caracterizada por eletroforese em gel e nLC-MS/MS. O objetivo principal do trabalho foi analisar a ligação cruzada entre o resíduo de histidina 2-oxohistidina na lisozima. Entretanto, foram identificadas ligações cruzadas entre 2- oxo-histidina e resíduos de lisina, além de ligações cruzadas com resíduos de triptofano oxidado. Em consequência dos resultados obtidos com a proteína modelo, avaliamos as oxidações e formação de dímeros em proteínas extraídas do cristalino do olho bovino. Diferentes tipos de modificações foram observados, além da formação de dímeros entre resíduos de histidina (2-oxoHis-His) caracterizados por nLC-MS/MS e bioinformática. Os dados obtidos neste trabalho, fornecem evidências da ocorrência simultânea de formação de ligações cruzadas entre diferentes proteicas após exposição a 1O2. O trabalho resultou na identificação e sequenciamento através de nLC-MS/MS de peptídeos oxidados por 1O2 a partir de uma proteína modelo. Esses resultados reiteram o importante papel do 1O2 em reações com proteínas além do seu envolvimento no desenvolvimento de condições patológicas. A dimerização formada na ligação cruzada em 2-oxo-His-His representa um possível novo biomarcador para o 1O2 em sistemas biológicos / Singlet molecular oxygen (1O2) can be generated in biological systems, reacting with different biomolecules. Proteins are major target for oxidants due to higher concentration in organisms. At physiological pH, 1O2 may react with the following aminoacids: His, Tyr, Met, Cys and Trp. Here, we investigated oxidation and dimerization reactions of proteins exposed to 1O2 using lysozyme as a model. Modifications of lysozyme by 1O2 were investigated using mass spectrometry approaches. Identification of the main oxidation and dimerization products were performed by peptide sequencing by nano-chromatography coupled to mass spectrometry (nLC-MS/MS). Singlet oxygen was generated using visible light and rose Bengal as photosensitizer, and from the decomposition of thermolabile endoperoxides DHPN16O2 e DHPN18O2, clean sources of 1O2. Experimental findings showed oxidation of Met, His, and Trp residuesin lysozyme. Structural characterization by nLC-MS/MS of the oxidative modifications in lysozyme tryptic peptides showed the addition of [18O]-labeled atoms in different amino acid residues. Lysozyme has in its structure a single histidine residue (His15). We identified shifts of +14 Da (described as oxohistidine), +16 and +32 Da in this residue. Methionine residues (Met12 and Met105) were oxidized to sulfoxides (MetSO mass shift of +16 Da). Modifications in tryptophan residues were identified as kynurenine (shift mass of +4 Da), +16 and + 32 Da. Oxidized lysozyme subjected to SDS-Page showed dimmers formation. The main aim was to analyze cross-linking formation between 2-oxo-histidine residues in lysozyme. However, cross-links between 2- oxo-histidine and lysine residues, and cross-links between oxidized tryptophan residues have been identified. Following results obtained with the protein model, we evaluated oxidation and the dimers formation in proteins extracted from the lens of the bovine eye. Analysis performed in nLC-MS/MS and bioinformatics identified different types of modifications, including formation of dimers with histidine residues (2-oxo-His-His). The data provided evidence for simultaneous occurrence of protein cross-linking on exposure 1O2. These results demonstrated the important role of 1O2 in protein reactions beyond its involvement in developing of pathological conditions. In conclusion, dimerization of proteins through 2-oxo-His residues may be a possible new biomarker for 1O2 in biological systems.
|
8 |
Geração de oxigênio molecular singlete: termólise de endoperóxidos naftalênicos e reações de hidroperóxidos lipídicos com íon nitrônio / Generation of singlet molecular oxygen: thermolysis of naphthalene endoperoxides and reaction of lipid hydroperoxides with nitronium ionScalfo, Alexsandra Cristina 09 May 2014 (has links)
Oxigênio molecular singlete [O2(1Δg)], uma espécie excitada, desempenha um papel importante em sistemas químicos e biológicos. É um poderoso eletrófilo, que reage com moléculas ricas em elétrons através de cicloadições [2+2], [4+2] e reações tipo ene. Ácidos graxos poliinsaturados, proteínas e DNA são alvos vulneráveis para o ataque de O2(1Δg). Os endoperóxidos de derivados de naftaleno são muito úteis e versáteis como fontes limpas de O2(1Δg), uma vez que são quase quimicamente inertes. Por outro lado, o desenvolvimento de novas fontes de O2(1Δg) ainda é uma tarefa desafiadora. Os derivados de naftaleno são capazes de armazenar O2(1Δg) por reação de cicloadiação [4+2] e liberá-lo em temperaturas amenas, o que os torna muito adequados para uso em estudos biológicos. A síntese destes compostos está baseada em modificações nos substituintes ligados nas posições 1 e 4 da estrutura do naftaleno. Na primeira parte deste trabalho, a síntese de três endoperóxidos derivados do naftaleno solúveis em água foi realizada. DHPNO2 e NDPO2 foram preparados de acordo com métodos similares descritos na literatura. A síntese de um novo endoperóxido dicatiônico derivado do naftaleno (NBTEO2) foi desenvolvida, contendo dois grupos de cloreto de amônio quaternário nas posições 1,4 do anel aromático. O intermediário chave na síntese dos três endoperóxidos é o BBMN, o qual foi preparado a partir da bromação radicalar do 1,4-dimetilnaftaleno. Nossos resultados têm indicado que este composto dicatiônico pode ser uma fonte química de O2(1Δg) em potencial, e pode ser explorado em estudos com mitocôndrias, onde o papel biológico de O2(1Δg) é investigado. A segunda parte deste trabalho foi dedicada a investigar a geração de O2(1Δg) através das reações entre hidroperóxidos de lipídeos (ácido oleico, linoleico e colesterol), hidroperóxidos orgânicos (cumeno e t-butila), bem como peróxido de hidrogênio com NO2+, utilizando o composto NO2BF4. Evidências da geração de O2(1Δg) foram obtidas através de medidas de emissão de luz na região do infravermelho próximo, no comprimento de onda de 1270 nm. Além disso, a prova inequívoca da presença de O2(1Δg) foi demonstrada através da caracterização espectral direta da emissão de luz no infravermelho próximo. O uso de azida de sódio como captador físico de O2(1Δg), juntamente com as medidas da quimiluminescência, contribuíram para identificar a geração desta espécie na reação entre hidroperóxidos de lipídeos e NO2BF4. Embora seja uma abordagem química, nossos resultados adicionaram informações importantes sobre a peroxidação lipídica, principalmente quando espécies reativas de nitrogênio estão envolvidas. O O2(1Δg) poderia ser gerado como um subproduto da peroxidação lipídica em condições onde espécies reativas de nitrogênio interagem com hidroperóxidos lipídicos. Isto pode contribuir para um melhor entendimento deste evento complexo com implicações fisiológicas ou fisiopatológicas. / Singlet molecular oxygen [O2(1Δg)], an excited species, plays an important role in chemical and biological systems. It is a powerfull electrophile, reacting with electron rich molecules through [2+2] cycloadditions, [4+2] cycloadditions and ene reactions. Polyunsaturated fatty acids, proteins and DNA are vulnerable targets for O2(1Δg) reaction. Naphthalene derivatives endoperoxides are very useful and versatile as a clean source of O2(1Δg), once they are almost chemically inert. On the other hand, developing new sources of O2(1Δg) are still a challenging task. Naphthalene derivatives are able to trap O2(1Δg) by [4+2] cycloaddition and release it in mild temperatures, which make them very suitable for biological studies. The synthesis of these compounds is based on modifications in substituents bonded in 1,4 positions of nafhthalene backbone. In the first part of present work, the synthesis of three water soluble naphthalene derivatives endoperoxides was performed. DHPNO2, NDPO2 were prepared according to similar methods described in the literature. A new di-cationic naphthalene derivative endoperoxide (NBTEO2) synthesis was developed, containing two quaternary ammonium chloride groups in 1,4-positions of aromatic ring. The key intermediate: for the synthesis of the three endoperoxides is the compound BBMN, which was prepared from radicalar bromination of 1,4-dimethylnaphthalene. Our results have indicated that this di-cationic compound can be a potential chemical source of O2(1Δg) and may be explored in mitochondrial studies where O2(1Δg) biological role is investigated. The second part of this work is dedicated to the investigation of generation of O2(1Δg) through reaction of lipid hydroperoxides (oleic acid, linoleic acids and cholesterol), organic hydroperoxides (cumene and t-butyl), as well as hydrogen peroxide with NO2+, using the compound NO2BF4. Evidences of generation of O2(1Δg) were obtained recording the monomol light emission measurement in near infrared region at wavelength of 1270 nm. Moreover, the proof of the presence of O2(1Δg) was unequivocally demonstrated by the direct spectral characterization of near-infrared light emission. The use of sodium azide as a physical quencher of O2(1Δg), associated to chemiluminescence measurements, contributed to identify the generation of this species in the reaction of lipid hydroperoxides and NO2BF4. Although, it is a chemical approach, our results add important information about lipid peroxidation, mainly when reactive species of nitrogen are involved. O2(1Δg) might be generate as a byproduct of lipid peroxidation, in conditions where reactive nitrogen species interact with lipid hydroperoxides. This might contribute to a better understand of this complex event and physiological or physiopathological implications
|
9 |
Hidroperóxido de timina como fonte biológica de oxigênio molecular singlete [O2 (1Δg)] / Thymine hydroperoxide as biological source of singlet molecular oxygen [O2 (1Δg)]Fernanda Manso Prado 24 November 2009 (has links)
A oxidação do DNA por espécies reativas de oxigênio, como o oxigênio molecular singlete [O2 (1Δg)] , pode estar relacionada ao aparecimento de mutações e ao desenvolvimento de doenças. O O2 (1Δg) pode ser gerado biologicamente por reação de fotossensibilização, pela reação de H2O2 e HOCl e pela decomposição de peróxidos orgânicos contendo hidrogênio alfa (α-ROOH), na presença de metais de transição (Fe2+, Cu2+) ou HOCl. A decomposição de α-ROOH, como hidroperóxidos de lipídeos ou proteínas na presença de metais de transição, pode gerar O2 (1Δg) via mecanismo de Russell. Neste mecanismo, a oxidação de α -ROOH gera radicais peroxila, que podem reagir entre si, formando um intermediário tetraóxido linear. Este intermediário tetraóxido linear pode decompor através de um mecanismo cíclico e produzir O2 (1Δg), um álcool e um composto carbonílico. Como a decomposição de α-ROOH pelo mecanismo de Russell pode ser uma importante fonte biológica de O2 (1Δg) decidimos investigar se o α-hidroperóxido de timina, 5-(hidroperoximetil)uracil (5-HMPU), poderia gerar esta espécie reativa na presença de metais (Ce4+, Fe2+, Cu2+) e HOCl. Outro objetivo foi avaliar os efeitos oxidativos, em DNA plasmidial (pBR322), da decomposição de 5-HPMU na presença de Cu2+. A geração de O2 (1Δg) na reação de 5-HPMU e Ce4+ ou HOCl foi demonstrada por meio do monitoramento da emissão de luz monomolecular de O2 (1Δg) na região do infravermelho próximo (IR-próximo, λ = 1270 nm) e bimolecular na região do visível (λ = 634 e 703 nm). A aquisição do espectro de emissão de O2 (1Δg) forneceu evidências inequívocas da geração desta espécie reativa na reação de 5-HPMU e Ce4+ ou HOCl. Além disto, a formação de O2 (1Δg) na reação de 5-HPMU e Fe2+, Cu2+ ou HOCl foi demonstrada através da captação química de O2 (1Δg) utilizando 9,10- divinilsulfonatoantraceno (AVS) e detecção por HPLC/MS/MS do endoperóxido (AVSO2) formado. A detecção por HPLC/MS/MS dos produtos de decomposição de 5-HPMU, 5- (hidroximetil)uracila (5-HMU) e 5-formiluracila (5-FoU), reforçaram a hipótese de geração de O2 (1Δg) pelo mecanismo de Russell. A análise dos resultados da incubação de pBR322, 5-HPMU e crescente concentração de Cu2+ mostraram o aumento da forma circular aberta (OC), indicando a formação de quebra de fita simples do DNA, provavelmente proveniente da presença dos radicais peroxila e alcoxila de 5-HPMU. Já a utilização das enzimas de reparo FPG e NTH na incubação de pBR322, 5-HPMU e Cu2+ forneceu evidências da formação preferencial de purinas oxidadas, especialmente de 2’-desoxiguanosina (dGuo). O aumento significativo da forma OC na presença de FPG indicou a formação de 8-oxo-2’-desoxiguanosina, resultante da oxidação da dGuo por O2 (1Δg) e/ou pelos radicais derivados de 5-HPMU. Podemos concluir que 5-HPMU pode ser uma importante fonte biológica de O2 (1Δg) . Além disto, a presença de 5-HPMU pode levar a propagação dos danos oxidativos no DNA, pois sua decomposição pode gerar radicais peroxila e alcoxila / Oxidation of DNA by singlet molecular oxygen O2 (1Δg) can be involved in the development of mutations and diseases. In vivo, O2 (1Δg) can be generated by photosensitization reaction, H2O2 and HOCl reaction and decomposition of organic hydroperoxides with α-hydrogen (α-ROOH) in the presence of metal ions (Fe2+, Cu2+) or HOCl. The α-ROOH decomposition, such as lipid or protein hydroperoxides in the presence of metal ions or HOCl can generate O2 (1Δg) by Russell mechanism. In this mechanism, the self-reaction of peroxyl radicals generates a linear tetraoxide intermediate that decomposes to O2 (1Δg) , an alcohol and an aldehyde. Therefore, the purpose of this work is to investigate if O2 (1Δg) can be generated by α-thymine hydroperoxide, 5- (hydroperoxymethyl)uracil (5-HPMU) in the presence of Ce4+, Fe2+, Cu2+ or HOCl. Another purpose is to study base modification and strand breaks formation in plasmid DNA (pBR322) by 5-HPMU decomposition in the presence of Cu2+. The generation of O2 (1Δg) in the reaction of 5- HPMU and Ce4+ or HOCl was monitored by monomol light emission in the near-infrared region (NIR, λ = 1270 nm) and dimol light emission in the visible region (λ = 634 e 703 nm). The generation of O2 (1Δg) during the reaction of 5-HPMU and Ce4+ or HOCl was confirmed by acquisition of the light emission spectrum in the NIR. Furthermore, the generation of O2 (1Δg) produced by 5-HPMU and Fe2+, Cu2+ or HOCl was also confirmed by chemical trapping using anthracene-9,10-divinylsulfonate (AVS) and HPLC/MS/MS detection of the corresponding endoperoxide (AVSO2). The detection by HPLC/MS/MS of 5-(hydroxymethyl)uracil (5-HMU) and 5-formyluracil (5-FoU), two 5-HPMU decomposition products, support the Russell mechanism. Plasmid results from pBR322, 5-HPMU and Cu2+ reaction showed formation of DNA open circular form (OC), probably produced by 5-HPMU peroxyl and alkoxyl radicals. Additionally, the reaction of pBR322, 5-HPMU and Cu2+ following by Fpg and NTH enzyme treatment demonstrated evidences of purine modification, especially 2’-deoxyguanosine (dGuo). The use of FPG enzyme indicated the formation of 8-oxo-7,8-dihydro-2’-deoxyguanosine, a dGuo oxidation product formed by O2 (1Δg) and/or 5-HPMU peroxyl and alkoxyl radicals. We can conclude that 5-HPMU can be a biological source of O2 (1Δg)] and 5-HPMU decomposition can lead to an enhancing of DNA oxidative damage by 5-HPMU peroxyl and alkoxyl radicals formation
|
10 |
Geração de oxigênio molecular singlete: termólise de endoperóxidos naftalênicos e reações de hidroperóxidos lipídicos com íon nitrônio / Generation of singlet molecular oxygen: thermolysis of naphthalene endoperoxides and reaction of lipid hydroperoxides with nitronium ionAlexsandra Cristina Scalfo 09 May 2014 (has links)
Oxigênio molecular singlete [O2(1Δg)], uma espécie excitada, desempenha um papel importante em sistemas químicos e biológicos. É um poderoso eletrófilo, que reage com moléculas ricas em elétrons através de cicloadições [2+2], [4+2] e reações tipo ene. Ácidos graxos poliinsaturados, proteínas e DNA são alvos vulneráveis para o ataque de O2(1Δg). Os endoperóxidos de derivados de naftaleno são muito úteis e versáteis como fontes limpas de O2(1Δg), uma vez que são quase quimicamente inertes. Por outro lado, o desenvolvimento de novas fontes de O2(1Δg) ainda é uma tarefa desafiadora. Os derivados de naftaleno são capazes de armazenar O2(1Δg) por reação de cicloadiação [4+2] e liberá-lo em temperaturas amenas, o que os torna muito adequados para uso em estudos biológicos. A síntese destes compostos está baseada em modificações nos substituintes ligados nas posições 1 e 4 da estrutura do naftaleno. Na primeira parte deste trabalho, a síntese de três endoperóxidos derivados do naftaleno solúveis em água foi realizada. DHPNO2 e NDPO2 foram preparados de acordo com métodos similares descritos na literatura. A síntese de um novo endoperóxido dicatiônico derivado do naftaleno (NBTEO2) foi desenvolvida, contendo dois grupos de cloreto de amônio quaternário nas posições 1,4 do anel aromático. O intermediário chave na síntese dos três endoperóxidos é o BBMN, o qual foi preparado a partir da bromação radicalar do 1,4-dimetilnaftaleno. Nossos resultados têm indicado que este composto dicatiônico pode ser uma fonte química de O2(1Δg) em potencial, e pode ser explorado em estudos com mitocôndrias, onde o papel biológico de O2(1Δg) é investigado. A segunda parte deste trabalho foi dedicada a investigar a geração de O2(1Δg) através das reações entre hidroperóxidos de lipídeos (ácido oleico, linoleico e colesterol), hidroperóxidos orgânicos (cumeno e t-butila), bem como peróxido de hidrogênio com NO2+, utilizando o composto NO2BF4. Evidências da geração de O2(1Δg) foram obtidas através de medidas de emissão de luz na região do infravermelho próximo, no comprimento de onda de 1270 nm. Além disso, a prova inequívoca da presença de O2(1Δg) foi demonstrada através da caracterização espectral direta da emissão de luz no infravermelho próximo. O uso de azida de sódio como captador físico de O2(1Δg), juntamente com as medidas da quimiluminescência, contribuíram para identificar a geração desta espécie na reação entre hidroperóxidos de lipídeos e NO2BF4. Embora seja uma abordagem química, nossos resultados adicionaram informações importantes sobre a peroxidação lipídica, principalmente quando espécies reativas de nitrogênio estão envolvidas. O O2(1Δg) poderia ser gerado como um subproduto da peroxidação lipídica em condições onde espécies reativas de nitrogênio interagem com hidroperóxidos lipídicos. Isto pode contribuir para um melhor entendimento deste evento complexo com implicações fisiológicas ou fisiopatológicas. / Singlet molecular oxygen [O2(1Δg)], an excited species, plays an important role in chemical and biological systems. It is a powerfull electrophile, reacting with electron rich molecules through [2+2] cycloadditions, [4+2] cycloadditions and ene reactions. Polyunsaturated fatty acids, proteins and DNA are vulnerable targets for O2(1Δg) reaction. Naphthalene derivatives endoperoxides are very useful and versatile as a clean source of O2(1Δg), once they are almost chemically inert. On the other hand, developing new sources of O2(1Δg) are still a challenging task. Naphthalene derivatives are able to trap O2(1Δg) by [4+2] cycloaddition and release it in mild temperatures, which make them very suitable for biological studies. The synthesis of these compounds is based on modifications in substituents bonded in 1,4 positions of nafhthalene backbone. In the first part of present work, the synthesis of three water soluble naphthalene derivatives endoperoxides was performed. DHPNO2, NDPO2 were prepared according to similar methods described in the literature. A new di-cationic naphthalene derivative endoperoxide (NBTEO2) synthesis was developed, containing two quaternary ammonium chloride groups in 1,4-positions of aromatic ring. The key intermediate: for the synthesis of the three endoperoxides is the compound BBMN, which was prepared from radicalar bromination of 1,4-dimethylnaphthalene. Our results have indicated that this di-cationic compound can be a potential chemical source of O2(1Δg) and may be explored in mitochondrial studies where O2(1Δg) biological role is investigated. The second part of this work is dedicated to the investigation of generation of O2(1Δg) through reaction of lipid hydroperoxides (oleic acid, linoleic acids and cholesterol), organic hydroperoxides (cumene and t-butyl), as well as hydrogen peroxide with NO2+, using the compound NO2BF4. Evidences of generation of O2(1Δg) were obtained recording the monomol light emission measurement in near infrared region at wavelength of 1270 nm. Moreover, the proof of the presence of O2(1Δg) was unequivocally demonstrated by the direct spectral characterization of near-infrared light emission. The use of sodium azide as a physical quencher of O2(1Δg), associated to chemiluminescence measurements, contributed to identify the generation of this species in the reaction of lipid hydroperoxides and NO2BF4. Although, it is a chemical approach, our results add important information about lipid peroxidation, mainly when reactive species of nitrogen are involved. O2(1Δg) might be generate as a byproduct of lipid peroxidation, in conditions where reactive nitrogen species interact with lipid hydroperoxides. This might contribute to a better understand of this complex event and physiological or physiopathological implications
|
Page generated in 0.1015 seconds