Spelling suggestions: "subject:"used priority"" "subject:"use priority""
1 |
Energy-efficient relay cooperation for lifetime maximizationZuo, Fangzhi 01 August 2011 (has links)
We study energy-efficient power allocation among relays for lifetime maximization
in a dual-hop relay network operated by amplify-and-forward relays with battery
limitations. Power allocation algorithms are proposed for three different scenarios.
First, we study the relay cooperation case where all the relays jointly support
transmissions for a targeted data rate. By exploring the correlation of time-varying
relay channels, we develop a prediction-based relay cooperation method for optimal
power allocation strategy to improve the relay network lifetime over existing methods
that do not predict the future channel state, or assume the current channel state
remains static in the future.
Next, we consider energy-efficient relay selection for the single source-destination
case. Assuming finite transmission power levels, we propose a stochastic shortest path
approach which gives the optimal relay selection decision to maximize the network
lifetime. Due to the high computational complexity, a suboptimal prediction-based
relay selection algorithm, directly coming from previous problem, is created.
Finally, we extend our study to multiple source-destination case, where relay selection
needs to be determined for each source-destination pair simultaneously. The
network lifetime in the presence of multiple source-destination pairs is defined as the
longest time when all source-destination pairs can maintain the target transmission
rate. We design relay-to-destination mapping algorithms to prolong the network lifeii
time. They all aim at maximizing the perceived network lifetime at the current time
slot. The optimal max-min approach and suboptimal user-priority based approach
are proposed with different levels of computational complexity. / UOIT
|
2 |
Service Level Objective based FairnessChen, Wenqin January 2021 (has links)
To solve the bottleneck problem of resource utilization and user experience quality in mobile communication networks, 5G introduces network slicing to cope with the huge resource demand of users. To further improve the quality of service for users with different needs, a new fairness definition based on service level objective is introduced. On this basis, a network slicing dynamic resource scheduling strategy based on the greedy algorithm is designed, and the actual application scenarios of slicing scheduling and user scheduling are simplified into a two-layer model, namely the slicing-user model, and combined with the greedy algorithm to make the service weight value. Combine the largest slice and the user with the highest priority, and complete the matching service. The advantage of this method is various system resources can be fairly allocated according to the same proportion to users. Through the optimal combination of each slice and user, the resources of the entire system can be fairly allocated to users with different needs. Python simulation results showed that the newly proposed network slicing dynamic resource scheduling mechanism based on the greedy algorithm can meet the different needs of users and achieve short term fairness, where the users get a fair share of the resource by each missing their SLO by a similar percentage, so as to better meet the needs of users. / För att lösa flaskhalsproblemet med resursanvändning och användarupplevelsekvalitet i mobilkommunikationsnät introducerar 5G nätverksskivning för att klara användarnas enorma resursbehov. För att ytterligare förbättra servicekvaliteten för användare med olika behov införs en ny rättvisedefinition baserad på servicenivåmål. På grundval av detta utformas en dynamisk resursplaneringsstrategi för nätverksskivning baserad på den giriga algoritmen, och de faktiska applikationsscenarierna för skivningsplanering och användarschemaläggning förenklas till en tvåskiktsmodell, nämligen skivningsanvändarmodellen, och kombineras med girig algoritm för att göra tjänstens viktvärde. Kombinera den största delen och användaren med högsta prioritet och slutför motsvarande tjänst. Fördelen med denna metod är att olika systemresurser kan fördelas rättvist enligt samma andel, och genom den bästa kombinationen av varje segment och användare kan hela systemets resurser fördelas rättvist till användare med olika behov. Pythons simuleringsresultat visar att den nyligen föreslagna nätverksskärningsdynamiska resursplaneringsmekanismen baserad på den giriga algoritmen kan tillgodose användarnas olika behov och uppnå kortsiktig rättvisa där användarna får en rättvis andel av resursen genom att var och en saknar sin SLO med en liknande procentsats , för att bättre möta användarnas behov.
|
Page generated in 0.0472 seconds