1 |
Enhancing Ontology Matching by Using Machine Learning, Graph Matching and Information Retrieval Techniques / Amélioration de l'alignement d'ontologies par les techniques d'apprentissage automatique, d'appariement de graphes et de recherche d'informationNgo, Duy Hoa 14 December 2012 (has links)
Ces dernières années, les ontologies ont suscité de nombreux travaux dans le domaine du web sémantique. Elles sont utilisées pour fournir le vocabulaire sémantique permettant de rendre la connaissance du domaine disponible pour l'échange et l'interprétation au travers des systèmes d'information. Toutefois, en raison de la nature décentralisée du web sémantique, les ontologies sont très hétérogènes. Cette hétérogénéité provoque le problème de la variation de sens ou ambiguïté dans l'interprétation des entités et, par conséquent, elle empêche le partage des connaissances du domaine. L'alignement d'ontologies, qui a pour but la découverte des correspondances sémantiques entre des ontologies, devient une tâche cruciale pour résoudre ce problème d'hétérogénéité dans les applications du web sémantique. Les principaux défis dans le domaine de l'alignement d'ontologies ont été décrits dans des études récentes. Parmi eux, la sélection de mesures de similarité appropriées ainsi que le réglage de la configuration de leur combinaison sont connus pour être des problèmes fondamentaux que la communauté doit traiter. En outre, la vérification de la cohérence sémantique des correspondances est connue pour être une tâche importante. Par ailleurs, la difficulté du problème augmente avec la taille des ontologies. Pour faire face à ces défis, nous proposons dans cette thèse une nouvelle approche, qui combine différentes techniques issues des domaines de l'apprentissage automatique, d'appariement de graphes et de recherche d'information en vue d'améliorer la qualité de l'alignement d'ontologies. En effet, nous utilisons des techniques de recherche d'information pour concevoir de nouvelles mesures de similarité efficaces afin de comparer les étiquettes et les profils d'entités de contexte au niveau des entités. Nous appliquons également une méthode d'appariement de graphes appelée propagation de similarité au niveau de la structure qui découvre effectivement des correspondances en exploitant des informations structurelles des entités. Pour combiner les mesures de similarité au niveau des entités, nous transformons la tâche de l'alignement d'ontologie en une tâche de classification de l'apprentissage automatique. Par ailleurs, nous proposons une méthode dynamique de la somme pondérée pour combiner automatiquement les correspondances obtenues au niveau des entités et celles obtenues au niveau de la structure. Afin d'écarter les correspondances incohérentes, nous avons conçu une nouvelle méthode de filtrage sémantique. Enfin, pour traiter le problème de l'alignement d'ontologies à large échelle, nous proposons deux méthodes de sélection des candidats pour réduire l'espace de calcul.Toutes ces contributions ont été mises en œuvre dans un prototype nommé YAM++. Pour évaluer notre approche, nous avons utilisé des données du banc d'essai de la compétition OAEI : Benchmark, Conference, Multifarm, Anatomy, Library and Large Biomedical Ontologies. Les résultats expérimentaux montrent que les méthodes proposées sont très efficaces. De plus, en comparaison avec les autres participants à la compétition OAEI, YAM++ a montré sa compétitivité et a acquis une position de haut rang. / In recent years, ontologies have attracted a lot of attention in the Computer Science community, especially in the Semantic Web field. They serve as explicit conceptual knowledge models and provide the semantic vocabularies that make domain knowledge available for exchange and interpretation among information systems. However, due to the decentralized nature of the semantic web, ontologies are highlyheterogeneous. This heterogeneity mainly causes the problem of variation in meaning or ambiguity in entity interpretation and, consequently, it prevents domain knowledge sharing. Therefore, ontology matching, which discovers correspondences between semantically related entities of ontologies, becomes a crucial task in semantic web applications.Several challenges to the field of ontology matching have been outlined in recent research. Among them, selection of the appropriate similarity measures as well as configuration tuning of their combination are known as fundamental issues that the community should deal with. In addition, verifying the semantic coherent of the discovered alignment is also known as a crucial task. Furthermore, the difficulty of the problem grows with the size of the ontologies. To deal with these challenges, in this thesis, we propose a novel matching approach, which combines different techniques coming from the fields of machine learning, graph matching and information retrieval in order to enhance the ontology matching quality. Indeed, we make use of information retrieval techniques to design new effective similarity measures for comparing labels and context profiles of entities at element level. We also apply a graph matching method named similarity propagation at structure level that effectively discovers mappings by exploring structural information of entities in the input ontologies. In terms of combination similarity measures at element level, we transform the ontology matching task into a classification task in machine learning. Besides, we propose a dynamic weighted sum method to automatically combine the matching results obtained from the element and structure level matchers. In order to remove inconsistent mappings, we design a new fast semantic filtering method. Finally, to deal with large scale ontology matching task, we propose two candidate selection methods to reduce computational space.All these contributions have been implemented in a prototype named YAM++. To evaluate our approach, we adopt various tracks namely Benchmark, Conference, Multifarm, Anatomy, Library and Large BiomedicalOntologies from the OAEI campaign. The experimental results show that the proposed matching methods work effectively. Moreover, in comparison to other participants in OAEI campaigns, YAM++ showed to be highly competitive and gained a high ranking position.
|
2 |
Intéropérabilité sémantique entre les outils de traitement d'images en neuro-imagerie / Semantic interoperability between image processing tools in neuroimagingWali, Bacem 21 June 2013 (has links)
Le domaine de la recherche en neuroimagerie nécessite de pouvoir partager, réutiliser et comparer les outils de traitement d'images des différents laboratoires. Cependant la tâche de partage de traitement sous forme de services et leur composition sous forme de workflow reste une tâche difficile et trop souvent complexe. Ceci est dû dans la plupart des cas à l'hétérogénéité des services et des plateformes qui diffèrent au niveau de leurs conceptions et de leurs implémentations. Nous travaillons dans le cadre du projet NeuroLOG, une initiative cherchant à construire un système fédéré pour le partage de données et d'outils de traitement dans le domaine de la neuroimagerie. Il adopte une approche ontologique pour assurer la médiation et le partage de ressources entre les différents collaborateurs. Notre travail de thèse vise à compléter la médiation pour assurer le partage et la composition des outils de traitement d'images et à fournir aux utilisateurs spécialistes et non-spécialistes du domaine de la neuroimagerie une plateforme de composition de service ergonomique et facile à utiliser. Nous utilisons pour cela les techniques du web sémantique afin de remédier aux différents problèmes d'interopérabilité et de cohérence de ressources utilisées et produites. La première solution proposée se fonde sur une extension de la plateforme OWL-S. Elle a été adaptée aux différents services web de la plateforme de neuroimagerie. On a déduit que finalement les outils qui ne possèdent pas le format de services web et une description conforme au standard WSDL ne peuvent pas être enchaînés sous forme de workflow. A partir de là, nous avons proposé une autre approche pour effectuer la composition de services de traitement d'images. Elle se se fonde sur un nouveau modèle ontologique de composition de services qui répond aux exigences de la neuroimagerie, qui s'articule bien avec l'ontologie de domaine OntoNeuroLOG et qui pourra remédier aux différents problèmes rencontrés lors de l'élaboration de la première approche. Ce travail a permit de remédier à la fois aux problèmes d'hétérogénéité des descripteurs des services et à l'interopérabilité des services selon les contraintes de la neuroimagerie au sein de la plateforme NeuroLOG. / The field of neuroimaging research requires the ability to share, reuse and compare image processing tools coming from different laboratories. However, sharing treatment as services and composing them as workflows, is usually difficult and a complex task. This is due in most cases to the heterogeneity of services and platforms with regards to their conception and their implementation. We work within the NeuroLOG project, which aims at developing a middleware to federate data repositories and to facilitate the sharing and reuse of processing tools to analyze the shared images. It adopts an ontological approach for data and tools mediation and for sharing resources. This work aims to provide tools mediation to enhance the sharing and composition of image processing tools and provide non-specialist and expert users of neuroimaging field with an ergonomic and easy to use composition platform. We have chosen to use the Semantic Web techniques to address the various problems of resource interoperability and consistency. The first proposed solution is based on an extension of the OWL-S framework. It has been adapted to the various web services of our neuroimaging platform. We finally concluded that services that haven't the WSDL standard as descriptor could not be chained as workflow. So, we have proposed a new approach to compose image processing tools. It is based on a new ontological model for service composition that meets the requirements of the neuroimaging domain and the constraints of our domain ontology OntoNeuroLOG and addresses the various problems encountered in the development of the first approach. This work led to solve the two major problems in the composition of services; the heterogeneity of services descriptors and the interoperability of services according to the constraints within the NeuroLOG platform.
|
3 |
Intéropérabilité sémantique entre les outils de traitement d'images en neuro-imagerieWali, Bacem 21 June 2013 (has links) (PDF)
Le domaine de la recherche en neuroimagerie nécessite de pouvoir partager, réutiliser et comparer les outils de traitement d'images des différents laboratoires. Cependant la tâche de partage de traitement sous forme de services et leur composition sous forme de workflow reste une tâche difficile et trop souvent complexe. Ceci est dû dans la plupart des cas à l'hétérogénéité des services et des plateformes qui diffèrent au niveau de leurs conceptions et de leurs implémentations. Nous travaillons dans le cadre du projet NeuroLOG, une initiative cherchant à construire un système fédéré pour le partage de données et d'outils de traitement dans le domaine de la neuroimagerie. Il adopte une approche ontologique pour assurer la médiation et le partage de ressources entre les différents collaborateurs. Notre travail de thèse vise à compléter la médiation pour assurer le partage et la composition des outils de traitement d'images et à fournir aux utilisateurs spécialistes et non-spécialistes du domaine de la neuroimagerie une plateforme de composition de service ergonomique et facile à utiliser. Nous utilisons pour cela les techniques du web sémantique afin de remédier aux différents problèmes d'interopérabilité et de cohérence de ressources utilisées et produites. La première solution proposée se fonde sur une extension de la plateforme OWL-S. Elle a été adaptée aux différents services web de la plateforme de neuroimagerie. On a déduit que finalement les outils qui ne possèdent pas le format de services web et une description conforme au standard WSDL ne peuvent pas être enchaînés sous forme de workflow. A partir de là, nous avons proposé une autre approche pour effectuer la composition de services de traitement d'images. Elle se se fonde sur un nouveau modèle ontologique de composition de services qui répond aux exigences de la neuroimagerie, qui s'articule bien avec l'ontologie de domaine OntoNeuroLOG et qui pourra remédier aux différents problèmes rencontrés lors de l'élaboration de la première approche. Ce travail a permit de remédier à la fois aux problèmes d'hétérogénéité des descripteurs des services et à l'interopérabilité des services selon les contraintes de la neuroimagerie au sein de la plateforme NeuroLOG.
|
4 |
Amélioration de l'alignement d'ontologies par les techniques d'apprentissage automatique, d'appariement de graphes et de recherche d'informationNgo, Duy Hoa 12 December 2012 (has links) (PDF)
Ces dernières années, les ontologies ont suscité de nombreux travaux dans le domaine du web sémantique. Elles sont utilisées pour fournir le vocabulaire sémantique permettant de rendre la connaissance du domaine disponible pour l'échange et l'interprétation au travers des systèmes d'information. Toutefois, en raison de la nature décentralisée du web sémantique, les ontologies sont très hétérogènes. Cette hétérogénéité provoque le problème de la variation de sens ou ambiguïté dans l'interprétation des entités et, par conséquent, elle empêche le partage des connaissances du domaine. L'alignement d'ontologies, qui a pour but la découverte des correspondances sémantiques entre des ontologies, devient une tâche cruciale pour résoudre ce problème d'hétérogénéité dans les applications du web sémantique. Les principaux défis dans le domaine de l'alignement d'ontologies ont été décrits dans des études récentes. Parmi eux, la sélection de mesures de similarité appropriées ainsi que le réglage de la configuration de leur combinaison sont connus pour être des problèmes fondamentaux que la communauté doit traiter. En outre, la vérification de la cohérence sémantique des correspondances est connue pour être une tâche importante. Par ailleurs, la difficulté du problème augmente avec la taille des ontologies. Pour faire face à ces défis, nous proposons dans cette thèse une nouvelle approche, qui combine différentes techniques issues des domaines de l'apprentissage automatique, d'appariement de graphes et de recherche d'information en vue d'améliorer la qualité de l'alignement d'ontologies. En effet, nous utilisons des techniques de recherche d'information pour concevoir de nouvelles mesures de similarité efficaces afin de comparer les étiquettes et les profils d'entités de contexte au niveau des entités. Nous appliquons également une méthode d'appariement de graphes appelée propagation de similarité au niveau de la structure qui découvre effectivement des correspondances en exploitant des informations structurelles des entités. Pour combiner les mesures de similarité au niveau des entités, nous transformons la tâche de l'alignement d'ontologie en une tâche de classification de l'apprentissage automatique. Par ailleurs, nous proposons une méthode dynamique de la somme pondérée pour combiner automatiquement les correspondances obtenues au niveau des entités et celles obtenues au niveau de la structure. Afin d'écarter les correspondances incohérentes, nous avons conçu une nouvelle méthode de filtrage sémantique. Enfin, pour traiter le problème de l'alignement d'ontologies à large échelle, nous proposons deux méthodes de sélection des candidats pour réduire l'espace de calcul. Toutes ces contributions ont été mises en œuvre dans un prototype nommé YAM++. Pour évaluer notre approche, nous avons utilisé des données du banc d'essai de la compétition OAEI : Benchmark, Conference, Multifarm, Anatomy, Library and Large Biomedical Ontologies. Les résultats expérimentaux montrent que les méthodes proposées sont très efficaces. De plus, en comparaison avec les autres participants à la compétition OAEI, YAM++ a montré sa compétitivité et a acquis une position de haut rang.
|
Page generated in 0.1609 seconds