• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 3
  • 3
  • 1
  • Tagged with
  • 52
  • 36
  • 31
  • 30
  • 25
  • 22
  • 18
  • 14
  • 11
  • 10
  • 10
  • 10
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Computational Evaluation and Structure-based Design for Potentiation of Nicotine Vaccines

Saylor, Kyle Lucas 08 October 2020 (has links)
Existing therapeutic options for the alleviation of nicotine addiction have been largely ineffective at stemming the tide of tobacco use. Immunopharmacotherapy, or vaccination, is a promising, alternate therapy that is currently being explored. Results from previous studies indicate that nicotine vaccines (NVs) are effective in subjects that achieve high drug-specific antibody titers, though overall efficacy has not been observed. Consequently, improvement of these vaccines is necessary before they can achieve approval for human use. In this report, three separate approaches towards NV potentiation are explored. The first approach applied physiologically-based pharmacokinetic (PBPK) modeling to better assess NV potential. Rat and human physiological and pharmacological parameters were obtained from literature and used to construct compartmentalized models for nicotine and cotinine distribution. These models were then calibrated and validated using data obtained from literature. The final models verified the therapeutic potential of the NV concept, identified four key parameters associated with vaccine success, and established correlates for success that could be used to evaluate future NVs prior to clinical trials. In the second approach, conjugate NV scaffoldings were engineered by using wild-type (WT) and chimeric human papilloma (HPV) 16 L1 protein virus-like particles (VLPs). The chimeric protein was created by removing the last 34 C-terminal residues from the WT protein and then incorporating a multi-epitope insert that could universally target major histocompatibility complex (MHC) class II molecules. The proteins were subsequently expressed in E. coli and purified using a multi-step process. Comparisons between the separation outcomes revealed that the insert was able to modulate individual process outcomes and improve overall yield without inhibiting VLP assembly. In the third approach, commonly used carrier proteins were computationally mined for their MHC class II epitope content using human leukocyte antigen (HLA) population frequency data and MHC epitope prediction software. The most immunogenic epitopes were concatenated with interspacing cathepsin cleavage sequences and the resulting protein was re-evaluated using the earlier methods. This work represents the first ever in silico design of chimeric antigens that could potentially target all of the major HLA DQ and HLA DR allotypes found in humans. / Doctor of Philosophy / Existing treatment options for addressing nicotine addiction have been largely ineffective at preventing tobacco use. Vaccination, on the other hand, is a promising, alternate treatment option that is currently being explored. Previous studies have shown that nicotine vaccines (NVs) are effective in the subjects that respond well to the vaccine. Effectiveness in the majority of vaccine recipients, however, has not been observed. Consequently, improvement of these vaccines is necessary before they can be used in humans. In this report, three separate approaches for improving NV effectiveness are explored. The first approach applied physiologically-based pharmacokinetic (PBPK) modeling to better assess NV potential. Parameters were obtained from literature and used to construct models that could predict NV effectiveness in rats and humans. These models were then calibrated and validated using data obtained from literature. The final models verified that NVs could work if certain conditions were met, identified four key parameters associated with vaccine success, and allowed for estimation of NV efficacy prior to their evaluation in humans. In the second approach, protein carriers for conjugate NVs were constructed using the human papilloma (HPV) 16 L1 protein. This protein is known for its ability to form virus-like particles (VLPs). Both a modified and an unmodified (wild-type) protein were constructed. The modified HPV 16 L1 protein was created by replacing the last 34 C-terminal amino acids with a polypeptide insert that could enhance the immunogenicity of the vaccine. The modified and unmodified proteins were then expressed in E. coli and purified. Results indicated that the insert was able to modulate individual process outcomes and improve overall process yield without preventing VLP assembly. In the third approach, commonly used carrier proteins were computationally mined for their MHC class II epitope content using human gene frequency data and MHC epitope prediction software. The epitopes that were predicted to be the most immunogenic were linked together with interspacing protease recognition sequences and the immunogenicity of the resulting protein was re-evaluated using the prediction software. This work represents the first computational design of antigens that could potentially allow a vaccine to be effective in a large portion of human population regardless of the genetic variability.
32

Developing novel blood-stage malaria vaccines

Douglas, Alexander D. January 2015 (has links)
Natural exposure to Plasmodium falciparum’s asexual blood-stage results in protection against severe disease, but no vaccine using the widely-studied blood-stage antigens apical membrane antigen 1 (AMA1) or merozoite surface protein 1 (MSP1) has proven convincingly protective in clinical trials. Challenges include antigenic polymorphism, the apparent requirement for exceptionally high antibody concentrations for protection, and clinical-grade production of conformationally-accurate recombinant protein antigens followed by formulation with a human-compatible adjuvant. This thesis describes the generation of viral-vectored vaccines targeting ten less-studied blood-stage antigens, focusing upon antigens implicated in erythrocyte invasion. These vaccines were immunogenic in mice and rabbits. The rabbit antibodies raised were functionally active in the in vitro assay of parasite growth inhibitory activity (GIA). GIA with antibodies against one antigen, RH5, exceeded that achieved with antibodies against the ‘gold standard’ AMA1 or MSP1 antigens. This antigen’s amino acid sequence is relatively conserved between parasite strains. Importantly, and unlike anti-AMA1 and MSP1 antibodies, the GIA effects transcend genetically diverse strains. It was hypothesised that blockade of the interaction of RH5 with its receptor basigin was likely to be a mechanism of action of anti-RH5 antibodies. Vaccine-induced polyclonal anti-RH5 serum was found to be capable of blocking this interaction, as well as merozoite attachment to erythrocytes. A panel of RH5-specific monoclonal antibodies were raised: those which block the RH5-receptor interaction were capable of neutralising parasites. Minimal linear epitopes recognised by these antibodies were mapped, and are likely to be within or close to RH5’s receptor binding site. These data support prompt clinical testing of RH5-based vaccines, and shed light upon the mechanism of action of anti-RH5 antibodies. However substantial challenges remain in establishing whether this antigen, selected on the basis of the in vitro assay of GIA, will be capable of achieving in vivo protection against P. falciparum. Further work presented in this thesis addresses the use of quantitative PCR data to assess blood-stage vaccine efficacy in experimental human challenge with P. falciparum, and the use of surface plasmon resonance to establish more detailed characterisation of vaccine-induced antibody responses. Finally, the results of P. falciparum challenge of RH5-vaccinated Aotus nancymaae non-human primates are presented.
33

Contribution au développement d’un modèle vaccinal recombinant pour le contrôle des trois infections virales majeures des ruminants, la variole, la PPR et la RVF, adapté à la situation épidémiologique des pays du Maghreb. / Contribution to the development of a model recombinant vaccine for the control of the three major viral infections of ruminants, small pox, PPR and RVF, adapted to the epidemiological situation of the Maghreb countries.

Ayari-Fakhfakh, Saïda Emna 20 May 2011 (has links)
L'objectif de cette thèse est le développement d'un vaccin recombinant capripoxvirus protégeant contre la variole des ruminants, la Fièvre de la Vallée du Rift (FVR) et la Peste des Petits Ruminants (PPR) comme modèle vaccinal destiné aux pays atteints par ces infections. Une première partie de ce travail a consisté en une enquête sérologique en Tunisie pour évaluer les prévalences PPR et FVR. L'enquête menée a montré une séroprévalence PPR de 7,6% et l'absence de FVR. Le risque lié à une infection par le virus de la fièvre de la vallée du Rift n'est pas nul en raison de l'identification des vecteurs compétents Culex theileri et Culex pipiens dans les zones échantillonnées. L'élaboration du vaccin capripoxvirus FVR-PPR porte sur l'expression des gènes NSmGN-FVR et H-PPR où chacune des valences est insérée dans le site de la thymidine kinase et le site d'un analogue du récepteur à l'interleukine 8 respectivement. Le vecteur choisi pour la souche vaccinale Kenya Sheeppox-1. Bien que nos travaux aient conduit à l'obtention du capripoxvirus double recombinant, ce dernier n'a pu être purifié. L'alternative a donc été d'évaluer l'effet protecteur et l'immunogénicité induits par le simple recombinant capripoxvirus- NSmGN-FVR, qui est un produit de l'étape intermédiaire dans l'élaboration du double recombinant FVR-PPR. L'effet protecteur de notre construction a été validé par deux expérimentations chez des souris Mus m. musculus MBT/Pas, avec épreuve infectieuse. Le nombre de doses administrées, les voies d'administration ont été déterminants dans cette protection justifiée par l'obtention d'anticorps neutralisants anti-FVR. L'étude de l'immunogénicité a été réalisée sur un modèle caprin sans épreuve infectieuse, une séroconversion FVR a été observée. La lymphoprolifération et le typage des sous populations lymphocytaires ont été analysés. / The aim of this thesis was to develop a capripoxvirus based recombinant vaccine against ruminant pox, Rift Valley fever (RVF) and peste des petits ruminants (PPR) considered as a vaccine model for countries affected by these infections. The first part of the work consisted in a serological survey conducted in Tunisia to detect the PPR and RVF presence. A PPR seroprevalence of 7.6% has been found and no antibodies against RVF were detected. However, the risk of infection with rift valley fever virus persists since competent vectors such as Culex pipiens and Culex theileri has been identified in the sampled areas. The development of the RVF-PPR vaccine candidate is based on the NSmGN-FVR and H-PPR gene expression - where each of the genes is inserted into the thymidine kinase and the Interleukin 8 receptor analogue genes, respectively. The vector chosen is the vaccine strain Sheeppox Kenya-1. Although the double recombinant RVF-PPR has been produced, it could not be purified. The alternative was to evaluate the protection and the immunogenicity of the single recombinant capripoxvirus NSmGN-FVR, which is a product of an intermediate step of the process of the double recombinant preparation. The protection of our vaccine candidate has been performed by two mice experiments in Mus m. musculus MBT/Pas, with challenge. The number of doses, the route of administration played a key role in the protection confirmed by the presence of neutralizing anti-RVF antibodies. The study of the immunogenicity of the vaccine candidate was conducted in goats without challenge, RVF seroconversion has been shown. Lymphoproliferation studies and lymphocytes subpopulations typing have been analysed.
34

Enhancing the efficacy of viral vector blood-stage malaria vaccines

Forbes, Emily K. January 2011 (has links)
Replication-deficient adenovirus (Ad) and modified vaccinia virus Ankara (MVA) vectors expressing single Plasmodium falciparum antigens can induce potent T cell and antibody responses and have entered clinical testing using a heterologous prime-boost immunisation approach (Ad_MVA). This thesis describes a number of pre-clinical approaches aimed at enhancing the efficacy of these viral vectored vaccines targeting the blood-stage of malaria. First, the development of a highly efficacious malaria vaccine is likely to require a multi-antigen and/or multi-stage subunit vaccine. The utility of an Ad_MVA immunisation regime combining vaccines expressing the 42kDa C-terminus of the blood- stage antigen merozoite surface protein 1 (MSP142) and the pre-erythrocytic antigen circumsporozoite protein (CSP) in the P. yoelii mouse model was investigated. It was found that vaccine co- administration leads to maintained antibody responses and efficacy against blood-stage infection, but reduced secondary CD8+ T cell responses and efficacy against liver-stage infection. CD8+ T cell interference can be minimised by co-administering the MVA vaccines at separate sites, resulting in enhanced liver-stage efficacy. The mechanisms of CD8+ T cell interference were explored. Second, Ad_MVA regimes expressing blood-stage antigens that can protect against P. chabaudi and P. yoelii blood-stage infection were tested against P. berghei, but did not confer protection. Similarly, IgG from rabbits immunised against P. falciparum MSP1 (PfMSP1) could not protect mice from a chimeric P. berghei parasite expressing PfMSP1. Third, two molecular adjuvants, the C4bp α-chain oligomerisation domain (IMX108/313) and the Fc fragment of murine IgG2a, were tested for their ability to enhance immunogenicity of recombinant adenoviruses when fused at the C-terminus of a blood-stage antigen. IMX108/313 was found to adjuvant T cell responses of small (< 80kDa) antigens and this was associated with antigen oligomerisation. However, the Fc fragment did not adjuvant responses. Finally, it was found that using a strong early promoter to drive antigen expression enhances the immunogenicity of single administration MVA vaccines, but that this did not enhance post-boost immunogenicity in an Ad_MVA regime.
35

Pre-clinical development of viral vectored transmission-blocking malaria vaccines

Kapulu, Melissa Chola January 2014 (has links)
Malaria transmission-blocking vaccine candidate antigens have been developed to induce antibodies using different delivery systems, mainly protein-in-adjuvant formulations, independently in various laboratories giving varied transmission-blocking activity (TBA). However, only one candidate antigen has been tested in clinical trials. In order to advance the most efficacious target(s) for possible clinical development, a rank order of the leading antigens based on TBA in a head-to-head comparison using a single delivery platform was made. Candidate antigens, AnAPN1, PfsHAP2, Pfs230-C, Pfs25, and Pfs48/45 (with or without N-glycosylation site substitution), were generated as recombinant viral-vectored vaccines using simian adenovirus and modified vaccinia Ankara and administered to mice in a heterologous prime-boost regimen. Vaccine-induced antibody responses were induced to all except PfsHAP2 were maintained up to ten and a half months post-boost. TBA was assessed at the peak response against Plasmodium falciparum NF54 laboratory strain and African field isolates by ex vivo membrane feeding assays in Anopheles stephensi and A. gambiae respectively. Antibodies to three antigens [Pfs230-C, Pfs25 and Pfs48/45+<sub>NGln</sub>] had TBA against P. falciparum NF54, and those against Pfs230-C and Pfs25 consistently showed efficacy regardless of the parasite exposure in both mosquito species. Further analysis of antibody responses to these two candidate antigens showed concentration-dependent efficacy against P. falciparum field isolates. In a rabbit study, responses to Pfs230-C, Pfs25 and Pfs48/45+<sub>NGln</sub> also showed IgG concentration-dependent efficacy. To assess TBA against AnAPN1, antibody responses to three fragments were tested. TBA was observed only against N-terminal 135 amino acid fragment. Pfs230-C and Pfs25 were generated as fusion vaccines using either a self-cleaving or glycine-proline linker sequence. Comparable antibody responses were induced between the two fusion strategies that had synergistic effects at inhibiting P. falciparum NF54 development in A. stephensi.
36

Identification of cross-protective antigens to develop a vaccine against instestinal pathogenic E.coli strains. Special Target to enterohemorrhagic E. coli / Identification d’antigènes protecteurs croisés pour mettre au point un vaccin contre les souches intestinales pathogènes d’E. coli : cible spéciale d’E. coli entérohémorrhagique

Rojas López, Maricarmen 06 February 2018 (has links)
Cette thèse de doctorat s'est déroulée dans le cadre d'un projet européen FP7 (7th Framework Program) MSCA (Marie Sklodowska-Curie action) ITN (Initiale Training Network) EID (European Industrial Doctorates) appelé DISCo (a multidisciplinary Doctoral Industrial School on novel preventive strategies against Escherichia coli infections) coordonné par Mariagrazia Pizza et co-coordonné par Mickaël Desvaux. Ainsi, ce doctorat s'est déroulé pour moitié en Italie au centre de recherche GSK (GlaxoSmithKline) sur le site de Sienne sous la supervision de Roberto Rosini et la direction de Fabio Polticelli de Universita degli Studi Roma Tre. L'autre moitié de la thèse s'est déroulée en France à l'INRA, centre Auvergne-Rhône-Alpes sur le site de Theix sous la direction de Mickaël Desvaux et Grégory Jubelin comme co-encadrant. Cette thèse de doctorat participe au développement de nouvelles stratégies préventives aux infections aux E. coli pathogènes intestinaux (InPEC), en particulier E. coli entérohémorragiques (EHEC), par une stratégie vaccinale. Dans ce contexte, une approche de vaccinologie inverse a été mise en œuvre pour identifier de nouveaux antigènes candidats qui ont ensuite été délivrés par la technologie GMMA (Generalized Modules for Membrane Antigens). Par ailleurs, un domaine épitope potentiel chez les autotransporteurs, i.e. l'autochaperon, a été caractérisé par analyse des séquences protéiques et modélisation structurale. / Enterohemorrhagic E. coli (EHEC) are a major cause of large outbreaks mainly affecting developed countries. From 1982 to 2002, a total of 350 E. coli O157 outbreaks were reported in the United States. EHEC infection causes diarrheal disease often associated with clinical complications like hemorrhagic colitis and hemolytic uremic syndrome (HUS). Although efforts focused on hygiene have been implemented in the food supply chain to reduce the risk of the foodborne E. coli O157 infection, outbreaks caused by this pathogen are still common. In addition, antibiotic-based therapy is discouraged for their potential undesirable effect in releasing shiga-toxin from the bacteria. Among non-antibiotic preventing strategies, vaccine development is warranted, still nowadays a licensed vaccine specific for human use against EHEC is not available. In this study, we used the Reverse Vaccinology approach applied on the EHEC O157:H7 genome to select new potential vaccine candidates. We identified a panel of 24 of potential protein antigens and we successfully expressed three of them in Generalized Modules for Membrane Antigens (GMMA) delivery system. GMMA expressing these vaccine candidates resulted to be immunogenic, raising a specific antibody response for two of the selected antigens. In particular, immunization with MC001 candidate was able to reduce intestinal EHEC O157:H7 colonization lowering the bacterial count in feces, colon and ceacum tissues in mice. This candidate was found to be homologue to the Salmonella Typhimurium Lipid A deacylase enzyme (LpxR) and to our knowledge this study was the first report describing it as vaccine candidate. Also, gene distribution and sequence variability analysis showed that MC001 was mainly present and conserved in EHEC O157:H7 and in some EPEC. Given the high genetic variability among and within these pathotypes, the identification and inclusion of this conserved candidate in a vaccine might cover against major intestinal pathogenic strains. Furthermore, because it has been showed that during the infection process some autotransporters, as MC021 can be reactive, we also analysed molecular determinant with an important role for their proper secretion and folding, namely the autochaperon (AC) domain. It appeared the AC is a common feature of autotransporters but strictly associated with passenger domains exhibiting a –helix fold. Their exposition at the bacterial cell the surface further positions the AC as a potential antigenic target and/or development of new treatments. These findings further provide new research directions for the development of non-antibiotic preventive strategy against InPEC in human but also animal.
37

Prospecção e avaliação de proteínas recombinantes para o desenvolvimento de uma vacina contra a leptospirose / Prospection and evaluation of recombinant proteins for the development of a vaccine against leptospirosis

Fortes, Tanise Pacheco 21 February 2017 (has links)
Submitted by Ubirajara Cruz (ubirajara.cruz@gmail.com) on 2018-06-08T14:07:09Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) tese_tanise_fortes.pdf: 1277949 bytes, checksum: 4aec80165f53d0b2f587adbcc608f856 (MD5) / Approved for entry into archive by Aline Batista (alinehb.ufpel@gmail.com) on 2018-06-11T16:56:11Z (GMT) No. of bitstreams: 2 tese_tanise_fortes.pdf: 1277949 bytes, checksum: 4aec80165f53d0b2f587adbcc608f856 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-06-11T16:56:11Z (GMT). No. of bitstreams: 2 tese_tanise_fortes.pdf: 1277949 bytes, checksum: 4aec80165f53d0b2f587adbcc608f856 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-02-21 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / A leptospirose é uma zoonose de ocorrência mundial causada por membros patogênicos do gênero Leptospira. Em países em desenvolvimento, como o Brasil, a doença representa um grave problema de saúde pública. Os hospedeiros suscetíveis adquirem a doença através do contato com urina, água ou solo contaminados com a bactéria. Além dos roedores, os bovinos e os caninos se destacam como importantes reservatórios de Leptospira spp, tornando a vacinação dos animais suscetíveis uma das principais formas de prevenção da doença. As vacinas disponíveis comercialmente são bacterinas que induzem resposta imune humoral predominantemente contra o lipopolissacarídeo (LPS) bacteriano e que não são capazes de fornecer proteção de longo prazo contra a infecção. As proteínas da membrana externa de Leptospira spp tem sido avaliadas como candidatos vacinais em modelo animal e são uma alternativa promissora às formulações comerciais em uso. Dessa maneira, o objetivo deste estudo foi realizar a triagem de preparações vacinais contendo proteínas recombinantes de Leptospira spp, visando o desenvolvimento de uma vacina contra a leptospirose. Cinco genes, LIC11889, LIC10666, LIC10498, LIC12666 e LIC10463, foram identificados e amplificados a partir do genoma de Leptospira interrogans sorovar Copenhageni cepa Fiocruz L1-130. Desses genes, quatro (LIC11889, LIC10666, LIC10498 e LIC10463) foram eficientemente expressos em sistema de expressão heteróloga em Escherichia coli e purificados através de cromatografia de afinidade. Duas proteínas recombinantes, rLIC11889 e rLIC10666 foram empregados na formulação de preparações vacinais, utilizadas para imunizar hamsters posteriormente desafiados com dose letal de L. interrogans sorovar Copenhageni cepa Fiocruz L1-130. Todos os animais vacinados com as preparações contendo as proteínas recombinantes sobreviveram à leptospirose aguda, tornando promissora sua utilização para a criação de vacinas contra a doença. / Leptospirosis is a worldwide zoonosis caused by pathogenic members of the genus Leptospira. In countries under development, like Brazil, the disease represents a serious problem of public health. The susceptible hosts acquire the disease through contact with urine, water or soil contaminated with the bacteria. As well as rodents, cattle and dogs are important reservoirs of Leptospira spp, making the vaccination of susceptible animals one of the main. ways of preventing the disease. The commercially available vaccines are bacterins that induce humoral immune response predominantly against the bacterial lipopolysaccharide (LPS) and are unable to provide long term protection against the infection. The outer membrane proteins of Leptospira spp have been evaluated as vaccinal candidates in animal models and are a promising alternative to usual commercial formulae. In this way, the objective of this study was to perform a trial of vaccinal preparations containing recombinant proteins of Leptospira spp, to develop a vaccine against leptospirosis. Five genes, LIC11889, LIC10666, LIC10498, LIC12666 and LIC10463 were identified and amplified from the genome of Leptospira interrogans serovar Copenhageni strain Fiocruz L1-130. From these genes, four (LIC11889, LIC10666, LIC10498 and LIC10463) were efficiently expressed in an heterologous expression system in Escherichia coli and purified through affinity chromatography. Two recombinant proteins, rLIC11889 and rLIC10666 were employed in the formulation of vaccinal preparations, used to immunize hamsters that were later challenged with the lethal dose of L. interrogans serovar Copenhageni strain Fiocruz L1-130. All the animals vaccinated with the preparations containing the recombinant proteins survived acute leptospirosis, making their use for the development of vaccines against the disease promising.
38

New approaches for improving the immunogenicity of modified vaccinia virus Ankara as a recombinant vaccine vector

Alharbi, Naif K. January 2014 (has links)
No description available.
39

Use of comparative genomics and in vitro screening approach to identify vaccine candidates for the food-borne pathogen Campylobacter jejuni

Poudel, Sabin 08 August 2023 (has links) (PDF)
Campylobacteriosis is a leading foodborne illness worldwide, primarily caused by Campylobacter jejuni (C. jejuni) which is associated with poultry consumption. The emergence of antibiotic resistance has emphasized the need for alternative strategies to control C. jejuni colonization in poultry. To assess the prevalence of C. jejuni in poultry, 270 cloacal swab samples were collected from broilers raised under No-Antibiotics Ever system. Among these samples, 16.3% were identified as C. jejuni positive. Notably, these isolates exhibited a diverse range of virulence factors and antimicrobial resistance genes, with 61.36% of isolates showing hyper-motile and 20.45% demonstrating multidrug resistance. Following isolation, whole genome sequencing was conducted on four selected strains using a hybrid sequencing approach. Subsequently, the complete genomes of these C. jejuni strains were analyzed to identify vaccine candidates using reverse vaccinology. Three conserved potential vaccine candidates were identified as suitable targets for vaccine development, namely phospholipase A (PldA), TonB dependent transporter (ChuA), and cytolethal distending toxin (CdtB). Furthermore, the gene expression of these candidates was examined in four C. jejuni strains during host-pathogen interactions using avian macrophage cell line HD11. Significant upregulation of all three candidate genes were observed in the four tested C. jejuni strains during interaction with host cells, indicating their crucial role in C. jejuni infection. Additionally, the expression of immune genes was evaluated in avian macrophage cells to understand the immune responses during C. jejuni infection. The infection resulted in the upregulation of toll-like receptor genes (TLR-4), pro-inflammatory genes (IL-1β, IFN-γ, IL-6, IL-8L1), anti-inflammatory gene (IL-10), and iNOS2 gene expression. The observed immune response demonstrates the potential of C. jejuni to induce host immunity for protection. In conclusion, our study identifies three conserved potential vaccine candidates and provides insights into the immune responses induced by C. jejuni infection in avian macrophage cells. These findings are crucial for the development of an effective vaccine against C. jejuni, aiming to reduce C. jejuni transmission through poultry consumption and the risk of human infection.
40

Discovery of a conserved Plasmodium antigen on the surface of malaria-infected red blood cells

Oteng, Eugene K. January 2013 (has links)
During its intraerythrocytic stages (IE), Plasmodium falciparum, the causative agent of the deadliest human malaria, remodels the host red cell membrane with a poorly defined assortment of parasite-­encoded proteins that undergo antigenic variation. Despite the requirement for immunologic stealth, exported parasite proteins also mediate strain-independent functions such as endothelial sequestration that are critical for parasite survival and pathogenesis. This thesis explores the hypothesis that P. falciparum displays novel structurally conserved proteins on the IE surface and these proteins may serve as useful antigens for a broadly effective anti-­malarial vaccine. In order to test this hypothesis, we developed an in vitro selection technique that sequentially incorporates unique P. falciparum isolates as the targets for Systematic Evolution of Ligands by EXponential enrichment (Serial-SELEX) to generate nucleic acid molecular probes, aptamers, capable of recognizing conserved cell surface determinants. Ten of 11 enriched aptamers were -parasite selective and three of these aptamers demonstrated strain-independent binding to P. falciparum. Aptamer recognition extended beyond the parasites used in Serial-SELEX to other laboratory and recent field isolates. Surprisingly the same three broadly binding aptamer selected against P. falciparum also recognized all laboratory-adapted and clinical isolates of P. vivax and P. knowlesi tested, strongly supporting our hypothesis that structurally conserved molecules are present on the surface IEs. Competition studies showed that the aptamers bound a single target which was confirmed as an IE membrane protein. Aptamer­‐mediated affinity purification and tandem mass spectrometry enabled identification of the aptamer target as parasite-encoded protein. Discovery of a protein conserved between the major human malarias may have implications for vaccine development and validates the Serial‑SELEX technique as a powerful tool for antigen discovery.

Page generated in 0.038 seconds