• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Strain-tuning of single semiconductor quantum dots

Plumhof, Johannes David 06 February 2012 (has links) (PDF)
Polarization entangled photon pairs on demand are considered to be an important building block of quantum communication technology. It has been demonstrated that semiconductor quantum dots (QDs), which exhibit a certain spatial symmetry, can be used as a triggered, on-chip source of polarization entangled photon pairs. Due to limitations of the growth, the as-grown QDs usually do not exhibit the required symmetry, making the availability of post-growth tuning techniques essential. In this work first the QD-morphology of hundreds of QDs is correlated with the optical emission of neutral excitons confined in GaAs/AlGaAs QDs. It is presented how elastic anisotropic stress can be used to partially restore the symmetry of self-assembled GaAs/AlGaAs and InGaAs/GaAs QDs, making them as candidate sources of entangled photon pairs. As a consequence of the tuning of the QD-anisotropy we observe a rotation of the polarization of the emitted light. The joint modification of polarization orientation and QD anisotropy can be described by an anticrossing of the so-called bright excitonic states. Furthermore, it is demonstrated that anisotropic stress can be used to tune the purity of the hole states of the QDs by modifying the degree of heavy and light hole mixing. This ability might be interesting for applications using the hole spin as a so-called quantum bit.
2

Strain-tuning of single semiconductor quantum dots

Plumhof, Johannes David 03 February 2012 (has links)
Polarization entangled photon pairs on demand are considered to be an important building block of quantum communication technology. It has been demonstrated that semiconductor quantum dots (QDs), which exhibit a certain spatial symmetry, can be used as a triggered, on-chip source of polarization entangled photon pairs. Due to limitations of the growth, the as-grown QDs usually do not exhibit the required symmetry, making the availability of post-growth tuning techniques essential. In this work first the QD-morphology of hundreds of QDs is correlated with the optical emission of neutral excitons confined in GaAs/AlGaAs QDs. It is presented how elastic anisotropic stress can be used to partially restore the symmetry of self-assembled GaAs/AlGaAs and InGaAs/GaAs QDs, making them as candidate sources of entangled photon pairs. As a consequence of the tuning of the QD-anisotropy we observe a rotation of the polarization of the emitted light. The joint modification of polarization orientation and QD anisotropy can be described by an anticrossing of the so-called bright excitonic states. Furthermore, it is demonstrated that anisotropic stress can be used to tune the purity of the hole states of the QDs by modifying the degree of heavy and light hole mixing. This ability might be interesting for applications using the hole spin as a so-called quantum bit.

Page generated in 0.1072 seconds