471 |
Design and control of a variable geometry turbofan with and independently modulated third streamSimmons, Ronald Jay 03 September 2009 (has links)
No description available.
|
472 |
Building Memory Structures to Foster Musicianship in the Cello StudioFetherston, Mary Davis 21 March 2011 (has links)
No description available.
|
473 |
An Empirically Validated Multiscale Continuum Damage Model for Thermoplastic Polymers Subjected to Variable Strain RatesFrancis, David K 11 May 2013 (has links)
This dissertation proposes a modi ed internal state variable (ISV) inelastic damage model that was motivated by experimental structure{property relations of thermoplastics. In particular, a new damage model was developed for glassy, amorphous thermoplastics. ISV evolution equations are de ned through thermodynamics, kinematics, and kinetics for isotropic damage arising from two di erent inclusion types: pores and particles. The damage arising from the particles and crazes is accounted for by three processes: damage nucleation, growth, and coalescence. Damage nucleation is de ned as the number density of voids/crazes. The associated ISV rate equation is a function of stress state, molecular weight, fracture toughness, particle size, particle volume fraction, temperature, and strain rate. The damage growth is based upon a single void growing and its growth is de ned by an ISV rate equation that is a function of stress state, strain rate sensitivity, and strain rate. The coalescence ISV equation enables interaction between voids and crazes and is a function of the nearest neighbor distance between voids/crazes, size of voids/crazes, temperature, and strain rate. The damage arising from pre-existing voids employs the Cocks{Ashby void growth rule. The total void volume fraction is a summation of the damage arising from particles, pores, and crazes. Micromechanical modeling results for a single void compare well to experimental ndings garnered from the literature. This formulation is then implemented into a nite element analysis. For damage evolution, comparisons are made between a one-dimensional material point simulator and a three-dimensional nite element (FE) simulation. Finally, good agreement is found between impact experiments and FE impact simulations using the implemented model.
|
474 |
Multilevel Model Selection: A Regularization Approach Incorporating Heredity ConstraintsStone, Elizabeth Anne January 2013 (has links)
This dissertation focuses on estimation and selection methods for a simple linear model with two levels of variation. This model provides a foundation for extensions to more levels. We propose new regularization criteria for model selection, subset selection, and variable selection in this context. Regularization is a penalized-estimation approach that shrinks the estimate and selects variables for structured data. This dissertation introduces a procedure (HM-ALASSO) that extends regularized multilevel-model estimation and selection to enforce principles of fixed heredity (e.g., including main effects when their interactions are included) and random heredity (e.g., including fixed effects when their random terms are included). The goals in developing this method were to create a procedure that provided reasonable estimates of all parameters, adhered to fixed and random heredity principles, resulted in a parsimonious model, was theoretically justifiable, and was able to be implemented and used in available software. The HM-ALASSO incorporates heredity-constrained selection directly into the estimation process. HM-ALASSO is shown to enjoy the properties of consistency, sparsity, and asymptotic normality. The ability of HM-ALASSO to produce quality estimates of the underlying parameters while adhering to heredity principles is demonstrated using simulated data. The performance of HM-ALASSO is illustrated using a subset of the High School and Beyond (HS&B) data set that includes math-achievement outcomes modeled via student- and school-level predictors. The HM-ALASSO framework is flexible enough that it can be adapted for various rule sets and parameterizations. / Statistics
|
475 |
RECENT TRENDS IN ADJOINT SENSITIVITY ANALYSIS FOR TRANSMISSION-LINE MODELLING METHODABOLGHASEM, PAYAM 04 1900 (has links)
<p> This thesis addresses recent trends and developments of the adjoint-variable method (AVM) for microwave structures with the time-domain transmission-line modeling (TD-TLM) method. </p> <p> Design sensitivity analysis of high-frequency (HF) structures is concerned with
estimating the sensitivity of the response with respect to the design parameters. This information is essential at different stages of the design cycle such as the optimization, tolerance analysis, and yield analysis. </p> <p> Traditional approaches of sensitivity calculations involve estimating the
sensitivities thought fmite-difference approximations. They suffer from formidable simulation time, as the full-wave analysis of practical HF structure requires extensive computational time. For a structure with N design parameters, at least N+l system analyses are required to extract the design response and its sensitivities. The adjoint variable method, on the other hand, supplies the sensitivity information in a very efficient way. Using at most two system analysis, the algorithm provides the design responses and its sensitivities, regardless of the number of the design parameters. </p> <p> In this thesis two contributions have been achieved which aims at enhancing the efficiency of the TLM-A VM framework. The first contribution is a reformulation of the AVM. This reformulation results in casting both the original and the adjoint systems in mathematically identical forms. It is shown that both systems can thus be modeled using a single TLM simulator with the only difference in the excitation. The second contribution focuses on generalizing the A VM algorithm by employing it for more advanced TLM nodes. The compatibility of the symmetrical condensed node (SCN) with the AVM algorithm has been verified in previous work for a general 3-D problem. Here, this is extended to include the hybrid symmetrical condensed node (HSCN), which is more efficient in terms of memory saving and simulation time. The new approaches are all illustrated through sensitivity estimation of different waveguide structures. </p> / Thesis / Master of Applied Science (MASc)
|
476 |
Industrial Batch Data Analysis Using Latent Variable MethodsRodrigues, Cecilia 09 1900 (has links)
Currently most batch processes run in an open loop manner with respect to final product quality, regardless of the performance obtained. This fact, allied with the increased industrial importance of batch processes, indicates that there is a pressing need for the development and dissemination of automated batch quality control techniques that suit present industrial needs. Within this context, the main objective of the current work is to exemplify the use of empirical latent variable methods to reduce product quality variability in batch processes. These methods are also known as multiway principal component analysis (MPCA) and partial least squares (MPLS) and were originally introduced by Nomikos and MacGregor (1992, 1994, 1995a and 1995b ). Their use is tied with the concepts of statistical process control (SPC) and lead to incremental process improvements. Throughout this thesis three different sets of industrial sets of data, originating from different batch process were analyzed. The first section of this thesis (Chapter 3) demonstrates how MPCA and multi-block, multiway, partial least squares (MB-MPLS) methods can be successfully used to troubleshoot an industrial batch unit in order to identify optimal process conditions with respect to quality. Additionally, approaches to batch data laundering are proposed. The second section (Chapter 4) elaborates on the use of a MPCA model to build a single, all-encompassing, on-line monitoring scheme for the heating phase of a multi-grade batch annealing process. Additionally, this same data set is used to present a simple alignment technique for batch data when on-line monitoring is intended (Chapter 5). This technique is referred to as pre-alignment and it relies on the use of a PLS model to predict the duration of new batches. Also, various methods for dealing with matrices containing different sized observations are proposed and evaluated. Finally, the last section (Chapter 6) deals with end-point prediction of a condensation polymerization process. / Thesis / Master of Applied Science (MASc)
|
477 |
The Effects of Prompts on Variability in Children with ASDYuen, Bonnie 07 1900 (has links)
The concept of "creativity" has been studied under the perspective of variability in behavior analysis. Creativity and variable responding contributes to problem solving in novel situations, learning new responses in different environments, and promote interactions that would otherwise be prohibited by repetitive behaviors and routines. During childhood, play contributes to the emergence of creativity and variability. Children develop many skills that are important to their lives while engaging in play behaviors. Some of those skills include self-advocacy, communication, and problem solving. Researchers have investigated different methods to promote variable play skills in children with autism spectrum disorder (ASD). There is limited research on prompting as an isolated variable in increasing variability in play responses. The purpose of this study was to investigate the effects of prompting on variable play skills. Results indicated that verbal instructions and modeling were effective in increasing variable play responses. Both participants displayed a sustained increase in novel item engagement when exposed to prompting.
|
478 |
Spatially Correlated Model Selection (SCOMS)Velasco-Cruz, Ciro 31 May 2012 (has links)
In this dissertation, a variable selection method for spatial data is developed. It is assumed that the spatial process is non-stationary as a whole but is piece-wise stationary. The pieces where the spatial process is stationary are called regions. The variable selection approach accounts for two sources of correlation: (1) the spatial correlation of the data within the regions, and (2) the correlation of adjacent regions.
The variable selection is carried out by including indicator variables that characterize the significance of the regression coefficients. The Ising distribution as prior for the vector of indicator variables, models the dependence of adjacent regions.
We present a case study on brook trout data where the response of interest is the presence/absence of the fish at sites in the eastern United States. We find that the method outperforms the case of the probit regression where the spatial field is assumed stationary and isotropic. Additionally, the method outperformed the case where multiple regions are assumed independent of their neighbors. / Ph. D.
|
479 |
Aerodynamic and Electromechanical Design, Modeling and Implementation Of Piezocomposite AirfoilsBilgen, Onur 02 September 2010 (has links)
Piezoelectrics offer high actuation authority and sensing over a wide range of frequencies. A Macro-Fiber Composite is a type of piezoelectric device that offers structural flexibility and high actuation authority. A challenge with piezoelectric actuators is that they require high voltage input; however the low power consumption allows for relatively lightweight electronic components. Another challenge, for piezoelectric actuated aerodynamic surfaces, is found in operating a relatively compliant, thin structure (desirable for piezoceramic actuators) in situations where there are relatively high external (aerodynamic) forces. Establishing an aeroelastic configuration that is stiff enough to prevent flutter and divergence, but compliant enough to allow the range of available motion is the central challenge in developing a piezocomposite airfoil. The research proposed here is to analyze and implement novel electronic circuits and structural concepts that address these two challenges.
Here, a detailed theoretical and experimental analysis of the aerodynamic and electromechanical systems that are necessary for a practical implementation of a piezocomposite airfoil is presented. First, the electromechanical response of Macro-Fiber Composite based unimorph and bimorph structures is analyzed. A distributed parameter electromechanical model is presented for interdigitated piezocomposite unimorph actuators. Necessary structural features that result in large electrically induced deformations are identified theoretically and verified experimentally. A novel, lightweight electrical circuitry is proposed and implemented to enable the peak-to-peak actuation of Macro-Fiber Composite bimorph devices with asymmetric voltage range.
Next, two novel concepts of supporting the piezoelectric material are proposed to form two types of variable-camber aerodynamic surfaces. The first concept, a simply-supported thin bimorph airfoil, can take advantage of aerodynamic loads to reduce control input moments and increase control effectiveness. The structural boundary conditions of the design are optimized by solving a coupled fluid-structure interaction problem by using a structural finite element method and a panel method based on the potential flow theory for fluids. The second concept is a variable-camber thick airfoil with two cascading bimorphs and a compliant box mechanism. Using the structural and aerodynamic theoretical analysis, both variable-camber airfoil concepts are fabricated and successfully implemented on an experimental ducted-fan vehicle. A custom, fully automated low-speed wind tunnel and a load balance is designed and fabricated for experimental validation. The airfoils are evaluated in the wind tunnel for their two-dimensional lift and drag coefficients at low Reynolds number flow. The effects of piezoelectric hysteresis are identified.
In addition to the shape control application, low Reynolds number flow control is examined using the cascading bimorph variable-camber airfoil. Unimorph type actuators are proposed for flow control in two unique concepts. Several electromechanical excitation modes are identified that result in the delay of laminar separation bubble and improvement of lift. Periodic excitation to the flow near the leading edge of the airfoil is used as the flow control method. The effects of amplitude, frequency and spanwise distribution of excitation are determined experimentally using the wind tunnel setup.
Finally, the effects of piezoelectric hysteresis nonlinearity are identified for Macro-Fiber Composite bimorphs. The hysteresis is modeled for open-loop response using a phenomenological classical Preisach model. The classical Preisach model is capable of predicting the hysteresis observed in 1) two cantilevered bimorph beams, 2) the simply-supported thin airfoil, and 3) the cascading bimorph thick airfoil. / Ph. D.
|
480 |
Improvement of the axial buckling capability of elliptical cylindrical shellsPaschero, Maurizio 24 April 2008 (has links)
A rather thorough and novel buckling analysis of an axially-loaded orthotropic circular cylindrical shell is formulated. The analysis assumes prebuckling rotations are negligible and uses a unique re-defining of the orthotropic material properties in terms of a so-called geometric mean isotropic (GMI) material. Closed-form expressions for the buckling stress in terms of cylinder geometry and orthotropic material properties are presented, the particular closed form depending on the specific character of the orthotropic material relative to the GMI material. With the formulation, the specific character of the buckling deformations - e.g., axisymmetric or nonaxisymmetric, the number of axial and circumferential waves - can be established. By using the maximum radius of curvature of an elliptical cross section in this formulation, the analysis is used to demonstrate the detrimental effects of an elliptical cross section on axial buckling capacity when compared to a circular cross section with the same circumference. Using the circumferentially-varying radius of curvature of an elliptical cross section, the analysis is then further used as the basis for developing two methods for improving the axial buckling capacity of elliptical cylinders. The first approach involves varying the wall thickness of an isotropic elliptical cylinder with circumferential position. Uniformly stable elliptical cross sections which preserve the same critical stress, critical load, or volume of an axially loaded circular cylinder of the same circumference are designed with the formulation. The second approach involves maintaining a uniform wall thickness but varying the orthotropic material properties with circumferential position. This approach is applied to a cylindrical lattice structure where it is assumed that the ribs are dense enough to be able to describe the lattice structure by means of an equivalent homogenized material. The orthotropic properties of the homogenized material are varied by varying the lattice rib angle with circumferential position. Considerable recovery of the axial buckling capacity of the variable-rib-angle design elliptical cylinder compared to the same cylinder constructed in isogrid fashion is demonstrated. In fact, recovery relative to an isogrid circular cylinder of the same circumference is demonstrated. For both approaches confirming finite element models are used to verify the findings. The two different approaches are compared, and finally the two approaches are recognized as special cases of a more general design philosophy. / Ph. D.
|
Page generated in 0.0597 seconds