441 |
Thermodynamics and charge exchange of the new BMW six-cylinder engineOtto, E., Rubbert, S., Borrmeister, J. 03 June 2019 (has links)
The BMW in-line six-cylinder engine has been modified and introduced to production in the new BMW 3 Series model. Its major features include variable intake and exhaust camshaft timing, a new induction system with resonance charging, a turbulence-generating system in the intake ports and a new exhaust system with two closed-loop, coupled catalysts integrated into the exhaust manifold. The cam timing of both camshafts can be adjusted continuously within a range of 40° crank angle (CA) for the inlet cams and 25° CA for the exhaust cams. The turbulence-generating system supplies combustion air to the engine during part load operation and produces the necessary charge motion to run the engine with greater valve overlap at low loads and speeds. Its combination with variable camshaft timing results in lower fuel consumption and exhaust emissions that meet the LEV emission standard. In addition, the variable cam timing raises the torque curve of the unthrottled engine, particularly at low engine speed. The maximum values for torque and power output are unchanged, but maximum torque is reached 500 r/min earlier than with the previous engine.
|
442 |
Searching For New Long-Period Variable Stars in the Globular Cluster M107Chapman, Justin 29 August 2022 (has links)
No description available.
|
443 |
Behavior Of Variable-length Genetic Algorithms Under Random SelectionStringer, Harold 01 January 2007 (has links)
In this work, we show how a variable-length genetic algorithm naturally evolves populations whose mean chromosome length grows shorter over time. A reduction in chromosome length occurs when selection is absent from the GA. Specifically, we divide the mating space into five distinct areas and provide a probabilistic and empirical analysis of the ability of matings in each area to produce children whose size is shorter than the parent generation's average size. Diversity of size within a GA's population is shown to be a necessary condition for a reduction in mean chromosome length to take place. We show how a finite variable-length GA under random selection pressure uses 1) diversity of size within the population, 2) over-production of shorter than average individuals, and 3) the imperfect nature of random sampling during selection to naturally reduce the average size of individuals within a population from one generation to the next. In addition to our findings, this work provides GA researchers and practitioners with 1) a number of mathematical tools for analyzing possible size reductions for various matings and 2) new ideas to explore in the area of bloat control.
|
444 |
Analysis of Tow-Placed, Variable-Stiffness LaminatesWaldhart, Chris 05 June 1996 (has links)
It is possible to create laminae that have spatially varying fiber orientation with a tow placement machine. A laminate which is composed of such plies will have stiffness properties which vary as a function of position.
Previous work had modelled such variable-stiffness laminae by taking a reference fiber path and creating subsequent paths by shifting the reference path. This thesis introduces a method where subsequent paths are truly parallel to the reference fiber path. The primary manufacturing constraint considered in the analysis of variable-stiffness laminates was limits on fiber curvature which proved to be more restrictive for parallel fiber laminae than for shifted fiber. The in-plane responses of shifted and parallel fiber variable-stiffness laminates to either an applied uniform end shortening or in-plane shear were determined. Both shifted and parallel fiber variable-stiffness laminates can redistribute the applied load thereby increasing critical buckling loads compared to traditional straight fiber laminates. The primary differences between the two methods is that parallel fiber laminates are not able to redistribute the loading to the degree of the shifted fiber. This significantly reduces the increase in critical buckling load for parallel fiber variable-stiffness laminates over straight fiber laminates. / Master of Science
|
445 |
A Smart Implementation of Turbo Decoding for Improved Power EfficiencyJemibewon, Abayomi Oluwaseyi 20 July 2000 (has links)
Error correction codes are a means of including redundancy in a stream of information bits to allow the detection and correction of symbol errors during transmission. The birth of error correction coding showed that Shannon's channel capacity could be achieved when transmitting information through a noisy channel. Turbo codes are a very powerful form of error correction codes that bring the performance of practical coding even closer to Shannon's theoretical specifications. Bit-error-rate (BER) performance and power dissipation are two important measures of performance used to characterize communication systems. Subject to the law of diminishing returns, as the resolution of the analog-to-digital converter (ADC) in the decoder increases, BER improves, but power dissipation increases. The number of decoding iterations has a similar effect on the BER performance and power dissipation of turbo coded systems. This is significant since turbo decoding is typically practiced in a fixed iterative manner, where all transmitted frames go through the same number of iterations. This is not always necessary since certain "good" frames would converge to their final bits within a few iterations, and other "bad" frames never do converge.
In this thesis, we investigate the technical feasibility of adapting the resolution of the ADC in the decoder, and the number of decoding iterations, in order to obtain the best trade-off possible between BER performance and power dissipation in a communication system. With the aid of computer-aided simulations, this thesis investigates the performance and practical implementation issues associated with incorporating a variable resolution ADC into the decoder structure of turbo codes. The possibility of further power conservation resulting from reduced decoding computation is also investigated with the use of a recently developed iterative stopping criterion. / Master of Science
|
446 |
Embedded Local Search Approaches for Routing Optimisation.Cowling, Peter I., Keuthen, R. January 2005 (has links)
No / This paper presents a new class of heuristics which embed an exact algorithm within the framework of a local search heuristic. This approach was inspired by related heuristics which we developed for a practical problem arising in electronics manufacture. The basic idea of this heuristic is to break the original problem into small subproblems having similar properties to the original problem. These subproblems are then solved using time intensive heuristic approaches or exact algorithms and the solution is re-embedded into the original problem. The electronics manufacturing problem where we originally used the embedded local search approach, contains the Travelling Salesman Problem (TSP) as a major subproblem. In this paper we further develop our embedded search heuristic, HyperOpt, and investigate its performance for the TSP in comparison to other local search based approaches. We introduce an interesting hybrid of HyperOpt and 3-opt for asymmetric TSPs which proves more efficient than HyperOpt or 3-opt alone. Since pure local search seldom yields solutions of high quality we also investigate the performance of the approaches in an iterated local search framework. We examine iterated approaches of Large-Step Markov Chain and Variable Neighbourhood Search type and investigate their performance when used in combination with HyperOpt. We report extensive computational results to investigate the performance of our heuristic approaches for asymmetric and Euclidean Travelling Salesman Problems. While for the symmetric TSP our approaches yield solutions of comparable quality to 2-opt heuristic, the hybrid methods proposed for asymmetric problems seem capable of compensating for the time intensive embedded heuristic by finding tours of better average quality than iterated 3-opt in many less iterations and providing the best heuristic solutions known, for some instance classes.
|
447 |
A Multiphysics Internal State Variable (ISV) Magneto Thermo-Visco-Plastic ModelMalki, Mounia 01 May 2020 (has links)
A macroscale Internal State Variable (ISV) constitutive model coupling magnetism effects with thermal, elastic, and damage effects is developed. Previous models for magnetic and mechanical fields included constitutive equations describing their effects on the material system studied independently. Some models explain the mechanisms behind mechanical deformations caused by magnetization changes that are presented in the literature. They mainly focus on the nanoscale level. Other models, describe the behavior of one specific magnet that is mostly a permanent magnet. However permanent magnets are made of rare-earth elements that are subjected to a high supply risk. In attempt to find an alternative to permanent magnets, a mathematical model that captures the physical behavior of magnets is needed, to help develop a tool to create a new permanent magnet. The ISV constitutive model herein describes the macroscale mechanical deformation caused by magnetic fields on ferromagnetic materials, Iron (Fe), Cobalt (Co) and Nickel (Ni) precisely. The ISV model internally coheres the kinematic, thermodynamic, and kinetic relationships of deformation using the evolving histories of internal variables. For the kinematics, a multiplicative decomposition of deformation gradient is employed including a magnetization term, and the Jacobian that represents the conservation of mass and conservation of momentum. The First and Second Law of Thermodynamics are used to constrain the appropriate constitutive relations through the Clausius-Duhem inequality. The kinetic framework employs a stress-strain relationship with a flow rule that couples the thermal, mechanical, and damage terms. To determine the ISVs needed to mimic the behavior of magnetic materials, we conducted various magnetic experiments on three different specimens made of Iron, Nickel and Cobalt. Experiments captured the mechanical deformation of a rod sample when subjected to a magnetic field using the Michelson Interferometer. To study the magnetic hysteresis of Iron, Nickel, and Cobalt, previous literature data were used. It was shown that the magnetization equation modeled the hysteresis of Iron, Nickel, and Cobalt. The magnetostrictive strain equation shows good agreement for Nickel and Cobalt, but further investigation should be done for Iron.
|
448 |
Episode 6.04 – Four-Variable Karnaugh Map ExampleTarnoff, David 01 January 2020 (has links)
Many digital designs begin with a truth table. In this episode, we do just that, and then create the simplified sum-of-products expression by way of the Karnaugh map.
|
449 |
SVSF Estimation for Target Tracking with Measurement Origin UncertaintyAttari, Mina January 2016 (has links)
The main idea of this thesis is to formulate the smooth variable structure filter (SVSF) for target tracking applications in the presence of measurement origin uncertainty. Tracking, by definition is the recursive estimation of the states of an unknown target from indirect, inaccurate and uncertain measurements. The measurement origin uncertainty introduces the data association problem to the tracking system.
The SVSF estimation strategy was first presented in 2007. This filter is based on sliding mode concepts formulated in a predictor-corrector form. Essentially, the SVSF uses an existence subspace and smoothing boundary layer to bind the estimated state trajectory to within a subspace around the true trajectory. The SVSF is demonstrated to be robust to modeling uncertainties and provide extra measures of performance such as magnitude of the chattering signal. Therefore, with respect to specific nature of car tracking problems that involves modeling uncertainty, it was hypothesized that a robust estimation strategy such as the SVSF, would improve the performance of the tracking system and give more robust tracking results. Also, having the extra information provided by the SVSF strategy, i.e. the chattering magnitude signal, would lead to algorithms that could better account for measurement origin uncertainty in the context of the data association process. Further to these hypotheses, this research has focused on investigating the performance of the SVSF in the target tracking problems, advancing the development of the SVSF, and employing its characteristics to deal with data association problems.
The performance of the SVSF, in its current form, can be improved when there is fewer measurements than states by using its error covariance in target tracking.
As the first contribution in this research, the SVSF is formulated in the context of target tracking in clutter and combined with data association algorithms, resulting in the SVSF-based probabilistic data association (PDA) and joint probabilistic data association (JPDA) for non-maneuvering and maneuvering targets. The results are promising in the tracking scenarios with modeling uncertainties. Therefore, the thesis is then expanded by generalizing the covariance of the SVSF for the cases where the number of measurements is less than the number of states. The generalized covariance formulation is then used to derive a generalized variable boundary layer (GVBL) SVSF. This new derivation gives an estimation method that is optimal in the MMSE sense and in the meantime preserves the robustness of the SVSF. The proposed algorithm improves the performance measures and makes a more reliable tracking algorithm.
This thesis explores the hypothesis that multiple target tracking performance can be substantially improved by including chattering information from SVSF-based filtering in the data association method. A Bayesian framework is used to formulate a new set of augmented association probabilities which include the chattering information. The simulation and experimental results demonstrate that the proposed augmented probabilistic data association improves the performance of the tracking system including maneuvering cars, in particular for highly cluttered environments.
The derived methods are applied on simulations and also on real data from an experimental setup. This thesis is made up of a compilation of papers that include three conference papers and three journal papers. / Thesis / Doctor of Philosophy (PhD)
|
450 |
Solid State Speed Control of a Squirrel-Cage Induction MotorWylie, John M. 09 1900 (has links)
<p> The speed of a squirrel-cage induction motor is controlled by varying the supply frequency. The design of an SCH controlled inverter, using gating from a logic unit to give a variable-frequency power-level output, is described.</p> / Thesis / Master of Engineering (MEngr)
|
Page generated in 0.289 seconds