• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 21
  • 10
  • 8
  • 6
  • 6
  • 6
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 133
  • 133
  • 133
  • 133
  • 67
  • 31
  • 31
  • 27
  • 24
  • 22
  • 21
  • 20
  • 19
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Low-Power Low-Cost 256MHzS/s 6-bit Analog to Digital Converter Using Selective Reference Voltage

Shieh, Chung-Hsiao 05 July 2005 (has links)
In this paper, we present a low-power low-cost 6-bits, ADC using selective reference voltage technique. Using selective reference voltage technique, the different bit uses different comparator can be achieved. Meanwhile, the outputs from comparators are a binary code which can be used for generating logic condition thereby controlling the switches. Because the conventional n bits flash ADC requires 2n - 1 comparators and its power, area and input capacitance are all proportional to 2n - 1. Whereas, the proposed n bits ADC needs only n comparators which can save more power and area, and its input capacitance are proportional to n only, and keep high speed. Our proposed ADC is design by TSMC 1P6M 0.18£gm process with 6-bits resolution, 1.8V power supply. The signal input range 0.5V~1.1V, sampling rate 256MS/s, DNL +0.46LSB~ -0.49LSB, INL +0.85LSB~ -0.05LSB. In addition, the FOM of the ADC is only 0.26 pJ/Conv and the power consumption is only 4.2mW.It is good for a low-power and low cost customer electronic application.
2

A 43mW single-channel 4GS/s 4-bit flash ADC IN 0.18um CMOS

Sheikhaei, Samad 05 1900 (has links)
The continued speed improvement of serial links and appearance of new communication technologies, such as ultra wideband (UWB), have introduced increasing demands on the speed and power specifications of high speed low to medium resolution analog to digital converters (ADCs). While multi channel ADCs can achieve high speeds, they often require extensive and costly post fabrication calibration. A single channel 4 bit flash ADC, suitable for abovementioned or similar applications, implemented entirely using current mode logic (CML) blocks, is presented. CML implementation allows for high sampling rates, while typically providing low power consumption at high speeds. To improve the conversion rate, both the analog (comparator array) and the digital (encoder) parts of the ADC are fully pipelined. Furthermore, the logic functions in the encoder are reformulated to reduce wire crossings and delay and to equalize the wires lengths in the layout. To keep the design simple, inductors are avoided. As a result, a compact design with small wire parasitics is achieved. Moreover, some geometric layout techniques, including a common centroid layout for the resistor ladder, are introduced to reduce the effect of mismatches to eliminate the use of digital calibration. The ADC is designed and fabricated in 0.18um CMOS and operates at 4GS/s. It achieves an effective number of bits (ENOB) of 3.71 (3.14, 2.75) for a 10MHz (0.501GHz, 1.491GHz) signal sampled at 4GS/s (3GS/s, 3GS/s). Differential/integral nonlinearity (DNL/INL) errors are between +/-0.35LSB and +/-0.26LSB, respectively. The ADC consumes 43mW from a 1.8V supply and occupies 0.06mm2 active area. Due to the use of CML circuits, the ADC achieves the highest speed reported for a single channel 4 bit ADC in a 0.18um CMOS technology. It also reports the best power performance among the 4-bit ADCs with similar or higher speeds. The active area is also among the smallest reported. In addition, in this thesis, the signal to noise ratio (SNR) of an ADC is formulated in terms of its INL performance. The related formulas in the literature are not accurate for low resolution ADCs, and yet they do not take the input waveform into account. Two standard waveforms, ramp and sinusoid, are considered here. The SNR formulas are derived and confirmed by simulation results.
3

Design of high speed folding and interpolating analog-to-digital converter

Li, Yunchu 30 September 2004 (has links)
High-speed and low resolution analog-to-digital converters (ADC) are key elements in the read channel of optical and magnetic data storage systems. The required resolution is about 6-7 bits while the sampling rate and effective resolution bandwidth requirements increase with each generation of storage system. Folding is a technique to reduce the number of comparators used in the flash architecture. By means of an analog preprocessing circuit in folding A/D converters the number of comparators can be reduced significantly. Folding architectures exhibit low power and low latency as well as the ability to run at high sampling rates. Folding ADCs employing interpolation schemes to generate extra folding waveforms are called "Folding and Interpolating ADC" (F&I ADC). The aim of this research is to increase the input bandwidth of high speed conversion, and low latency F&I ADC. Behavioral models are developed to analyze the bandwidth limitation at the architecture level. A front-end sample-and-hold unit is employed to tackle the frequency multiplication problem, which is intrinsic for all F&I ADCs. Current-mode signal processing is adopted to increase the bandwidth of the folding amplifiers and interpolators, which are the bottleneck of the whole system. An operational transconductance amplifier (OTA) based folding amplifier, current mirror-based interpolator, very low impedance fast current comparator are proposed and designed to carry out the current-mode signal processing. A new bit synchronization scheme is proposed to correct the error caused by the delay difference between the coarse and fine channels. A prototype chip was designed and fabricated in 0.35μm CMOS process to verify the ideas. The S/H and F&I ADC prototype is realized in 0.35μm double-poly CMOS process (only one poly is used). Integral nonlinearity (INL) is 1.0 LSB and Differential nonlinearity (DNL) is 0.6 LSB at 110 KHz. The ADC occupies 1.2mm2 active area and dissipates 200mW (excluding 70mW of S/H) from 3.3V supply. At 300MSPS sampling rate, the ADC achieves no less than 6 ENOB with input signal lower than 60MHz. It has the highest input bandwidth of 60MHz reported in the literature for this type of CMOS ADC with similar resolution and sample rate.
4

A 43mW single-channel 4GS/s 4-bit flash ADC IN 0.18um CMOS

Sheikhaei, Samad 05 1900 (has links)
The continued speed improvement of serial links and appearance of new communication technologies, such as ultra wideband (UWB), have introduced increasing demands on the speed and power specifications of high speed low to medium resolution analog to digital converters (ADCs). While multi channel ADCs can achieve high speeds, they often require extensive and costly post fabrication calibration. A single channel 4 bit flash ADC, suitable for abovementioned or similar applications, implemented entirely using current mode logic (CML) blocks, is presented. CML implementation allows for high sampling rates, while typically providing low power consumption at high speeds. To improve the conversion rate, both the analog (comparator array) and the digital (encoder) parts of the ADC are fully pipelined. Furthermore, the logic functions in the encoder are reformulated to reduce wire crossings and delay and to equalize the wires lengths in the layout. To keep the design simple, inductors are avoided. As a result, a compact design with small wire parasitics is achieved. Moreover, some geometric layout techniques, including a common centroid layout for the resistor ladder, are introduced to reduce the effect of mismatches to eliminate the use of digital calibration. The ADC is designed and fabricated in 0.18um CMOS and operates at 4GS/s. It achieves an effective number of bits (ENOB) of 3.71 (3.14, 2.75) for a 10MHz (0.501GHz, 1.491GHz) signal sampled at 4GS/s (3GS/s, 3GS/s). Differential/integral nonlinearity (DNL/INL) errors are between +/-0.35LSB and +/-0.26LSB, respectively. The ADC consumes 43mW from a 1.8V supply and occupies 0.06mm2 active area. Due to the use of CML circuits, the ADC achieves the highest speed reported for a single channel 4 bit ADC in a 0.18um CMOS technology. It also reports the best power performance among the 4-bit ADCs with similar or higher speeds. The active area is also among the smallest reported. In addition, in this thesis, the signal to noise ratio (SNR) of an ADC is formulated in terms of its INL performance. The related formulas in the literature are not accurate for low resolution ADCs, and yet they do not take the input waveform into account. Two standard waveforms, ramp and sinusoid, are considered here. The SNR formulas are derived and confirmed by simulation results.
5

A 43mW single-channel 4GS/s 4-bit flash ADC IN 0.18um CMOS

Sheikhaei, Samad 05 1900 (has links)
The continued speed improvement of serial links and appearance of new communication technologies, such as ultra wideband (UWB), have introduced increasing demands on the speed and power specifications of high speed low to medium resolution analog to digital converters (ADCs). While multi channel ADCs can achieve high speeds, they often require extensive and costly post fabrication calibration. A single channel 4 bit flash ADC, suitable for abovementioned or similar applications, implemented entirely using current mode logic (CML) blocks, is presented. CML implementation allows for high sampling rates, while typically providing low power consumption at high speeds. To improve the conversion rate, both the analog (comparator array) and the digital (encoder) parts of the ADC are fully pipelined. Furthermore, the logic functions in the encoder are reformulated to reduce wire crossings and delay and to equalize the wires lengths in the layout. To keep the design simple, inductors are avoided. As a result, a compact design with small wire parasitics is achieved. Moreover, some geometric layout techniques, including a common centroid layout for the resistor ladder, are introduced to reduce the effect of mismatches to eliminate the use of digital calibration. The ADC is designed and fabricated in 0.18um CMOS and operates at 4GS/s. It achieves an effective number of bits (ENOB) of 3.71 (3.14, 2.75) for a 10MHz (0.501GHz, 1.491GHz) signal sampled at 4GS/s (3GS/s, 3GS/s). Differential/integral nonlinearity (DNL/INL) errors are between +/-0.35LSB and +/-0.26LSB, respectively. The ADC consumes 43mW from a 1.8V supply and occupies 0.06mm2 active area. Due to the use of CML circuits, the ADC achieves the highest speed reported for a single channel 4 bit ADC in a 0.18um CMOS technology. It also reports the best power performance among the 4-bit ADCs with similar or higher speeds. The active area is also among the smallest reported. In addition, in this thesis, the signal to noise ratio (SNR) of an ADC is formulated in terms of its INL performance. The related formulas in the literature are not accurate for low resolution ADCs, and yet they do not take the input waveform into account. Two standard waveforms, ramp and sinusoid, are considered here. The SNR formulas are derived and confirmed by simulation results. / Applied Science, Faculty of / Electrical and Computer Engineering, Department of / Graduate
6

DIGITALLY ASSISTED TECHNIQUES FOR NYQUIST RATE ANALOG-to-DIGITAL CONVERTERS

Majidi, Rabeeh 05 May 2015 (has links)
With the advance of technology and rapid growth of digital systems, low power high speed analog-to-digital converters with great accuracy are in demand. To achieve high effective number of bits Analog-to-Digital Converter(ADC) calibration as a time consuming process is a potential bottleneck for designs. This dissertation presentsa fully digital background calibration algorithm for a 7-bit redundant flash ADC using split structure and look-up table based correction. Redundant comparators are used in the flash ADC design of this work in order to tolerate large offset voltages while minimizing signal input capacitance. The split ADC structure helps by eliminating the unknown input signal from the calibration path. The flash ADC has been designed in 180nm IBM CMOS technology and fabricated through MOSIS. This work was supported by Analog Devices, Wilmington,MA. While much research on ADC design has concentrated on increasing resolution and sample rate, there are many applications (e.g. biomedical devices and sensor networks) that do not require high performance but do require low power energy efficient ADCs. This dissertation also explores on design of a low quiescent current 100kSps Successive Approximation (SAR) ADC that has been used as an error detection ADC for an automotive application in 350nm CD (CMOS-DMOS) technology. This work was supported by ON Semiconductor Corp, East Greenwich,RI.
7

Post-Correction of Analog to Digital Converters

Gong, Pu, Guo, Hua January 2008 (has links)
<p>As the rapid development of the wireless communication system and mobile video devices, the integrated chip with low power consuming and high conversion efficiency is widely needed. ADC and DAC are playing an important role in these applications.</p><p>The aim of this thesis is to verify a post-correction method which is used for improving the performance of ADC. First of all, this report introduces the development and present status of ADC, and expatiate its important parameters from two different classes (static performance and dynamic performance). Based on the fundamental principle, the report then focuses on the dynamic integral non-linearity modeling of ADC. Refer to this model, one post-correction method is described and verified.</p><p>Upon the face of post-correction, this method is to modify the output signals which have been converted from analog to digital format by adding a correction term. Improvement made by the post-correction needs to be checked out. Thus the performance analysis mainly relay on the measures of total harmonic distortion and signal to noise and distortion ratio is also included in this thesis.</p>
8

Research on Sigma-Delta Analog-to-Digital Converter for Precision Measurement

Wang, Yuan-Hung 26 July 2007 (has links)
The main purpose of this thesis is to research High-Order Sigma-Delta Analog-to-Digital converter for precision measurement, a PI compensator and a third-order Sigma-Delta modulator has been proposed based on a second-order Sigma-Delta modulator. In accordance with the analysis result of frequency domain and time domain of system, we use third-order model because of better response with auxiliary software to simulate and implement the system, then measure modulator output variance for input variation. This converter circuit demonstrates that it can achieve the requirements of precision and linearity which the measure instrument demands.
9

A 1.8V 12bits 100-MS/s Pipelined Analog-to-Digital Converter

Chen, Bo-Hua 07 August 2007 (has links)
The digital product increases widely and vastly. Because we live in the analog world, we require a converter to change analog signal to digital one. However, the requirement of analog-to-digital converter is rising due to progress of DSP (Digital Signal Processor). For portable products, the power consumption also needs to take into account. As mentioned above, I will implement a high speed and low power analog to digital converter. In this thesis, the circuits are designing with TSMC.18 1P6M CMOS process and 1.8V of supply voltage. The speed and resolution of ADC are 100Ms/s and 12bits individually. The pipelined coupling with 1.5bit/stage constitutes the main architecture of analog-to-digital converter. The dynamic comparator is used for lower power. Finally, the output codes are translated by digital correction circuit.
10

Post-Correction of Analog to Digital Converters

Gong, Pu, Guo, Hua January 2008 (has links)
As the rapid development of the wireless communication system and mobile video devices, the integrated chip with low power consuming and high conversion efficiency is widely needed. ADC and DAC are playing an important role in these applications. The aim of this thesis is to verify a post-correction method which is used for improving the performance of ADC. First of all, this report introduces the development and present status of ADC, and expatiate its important parameters from two different classes (static performance and dynamic performance). Based on the fundamental principle, the report then focuses on the dynamic integral non-linearity modeling of ADC. Refer to this model, one post-correction method is described and verified. Upon the face of post-correction, this method is to modify the output signals which have been converted from analog to digital format by adding a correction term. Improvement made by the post-correction needs to be checked out. Thus the performance analysis mainly relay on the measures of total harmonic distortion and signal to noise and distortion ratio is also included in this thesis.

Page generated in 0.0622 seconds