1 |
Study of interactions of terminal units of a variable air volume air conditioning system洪淵深, Hung, Yuen-sum. January 1997 (has links)
published_or_final_version / Mechanical Engineering / Master / Master of Philosophy
|
2 |
Study of interactions of terminal units of a variable air volume air conditioning system /Hung, Yuen-sum. January 1997 (has links)
Thesis (M. Phil.)--University of Hong Kong, 1997. / Includes bibliographical references (leaf 250-254).
|
3 |
Development of models for series and parallel fan variable air volume terminal unitsFurr, James C., Jr 17 September 2007 (has links)
Empirical models of airflow output and power consumption were developed for
series and parallel fan powered variable air volume terminal units at typical design
pressure conditions. A testing procedure and experimental setup were developed to test
sets of terminal units from three different manufacturers. Each set consisted of two
series and two parallel units, each with 8 in. (203 mm) and 12 in. (304 mm) primary air
inlets, for a total of four units in each set. Generalized models were developed for the
series and parallel units, with coefficients varying by size and manufacturer. Statistical
modeling utilized SAS software (2002).
Fan power and airflow data were collected at downstream static pressures over a
range from 0.1 to 0.5 in. w.g. (25 to 125 Pa) for the parallel terminal units. Downstream
static pressure was held constant at 0.25 in. w.g. (62 Pa) for the series units. Upstream
static pressures of all variable air volume (VAV) terminal units ranged from 0.1 to 2.0
in. w.g. (25 to 498 Pa). Data were collected at four different primary air damper
positions. Data were also collected at four different terminal unit fan speeds, controlled
by a silicon controlled rectifier (SCR). The models utilized the RMS voltage entering
the terminal unit fan, the 'rake' sensor velocity pressure, and the downstream static
pressure. In addition to the terminal unit airflow and power models, a model was
developed to quantify air leakage in parallel terminal units, when the unit fan was off.
In all but two of the VAV terminal units, the resulting models of airflow and
power had R2 values greater than 0.90. In the two exceptions, there appeared to be
manufacturing defects: either excessive air leakage or a faulty SCR that limited the
effectiveness of the airflow and power models to capture the variation in the data.
|
4 |
Dynamic response of a cooling and dehumidifying coil to variations in air flow rate葉啓明, Ip, Kai-ming. January 1997 (has links)
published_or_final_version / Mechanical Engineering / Master / Master of Philosophy
|
5 |
Dynamic response of a cooling and dehumidifying coil to variations in air flow rate /Ip, Kai-ming. January 1997 (has links)
Thesis (M. Phil.)--University of Hong Kong, 1998. / "1998"--Cover. Includes bibliographical references (leaves 176-184).
|
6 |
Investigation of energy savings technologies for cold rooms.Mulobe, Ngoy Jean-Claude. January 2014 (has links)
M. Tech. Engineering: Mechanical. / Determines the highest energy savings which could be achieved by using variable air ventilation (VAV) strategy in cool processing, without affecting the performance of the cold room.
|
7 |
Utredning av behovsstyrd ventilation : En jämförelse mellan CAV och VAVÄngalid, Filip January 2012 (has links)
Denna rapport är ett examensarbete på C-nivå som görs i sammarbete med teknikkonsulten Ramböll. Det vanligaste sättet att ventilera en byggnad idag är med så kallad CAV-ventilation (Constant Air Volume). Denna metod bygger på att ett luftflöde bestäms för rummet och upprätthålls med konstant flöde. En annan metod är så kallad VAV (Variable Air Volume) som bygger på att flödet varierar efter behovet. Anledningen till varför man väljer VAV istället för CAV är att med CAV finns det ofta en stor risk att man överventilerar ett rum eller byggnad, just på grund av att flödet är konstant. Problemet med VAV är att det är en högre investeringskostnad än för CAV så metoden lämpar sig bara där energibesparingen är så stor så den täcker mellanskillnaden i pris. Denna utredning visar i vilka typer av rum som det kan löna sig att installera VAV istället för det traditionella CAV-systemet. För att undersöka detta sker simuleringar av fiktiva modeller i programmet IDA Indoor Climate & Energy (IDA). IDA är ett simuleringsverktyg som används till att simulera den termiska komforten i byggnader samt byggnadens energianvändning. De olika rumstyperna som simuleras är: klassrummet, kontoret och mötesrummet. De olika fallen är utformade så att de liknar så som de ser ut i verkligheten både till geometri och nyttjandegrad. Om något av fallen visade sig vara en bra kandidat för att förse med VAV fortsätter utredningen med att fastställa hur stort bör flödet vara för att energibesparingen ska bli så stor så att det täcker investeringskostnaden. Den ekonomiska kalkyleringen sker både med en livscykelkostnadsanalys och med en enklare återbetalningstidskalkyl. Resultatet för simuleringarna visade att den enda rumstypen i denna utredning som var lönsam var mötesrummet. Klassrummet och kontoret visade sig båda ge en förlust. Detta var eftersom nyttjandegraden för dessa rum var så pass hög så att ventilationen med VAV var igång nästan lika mycket som för CAV. För mötesrummet var nyttjandegraden betydligt lägre vilket innebar att energibesparingen blev så pass hög att den täckte den höga investeringskostnaden. För mötesrummet gjordes sedan en flödesanalys som visade att rummets luftflöde bör vara dimensionerat för mellan omkring 20 – 30 personer för att vara en lönsam investering.
|
8 |
Development of a Laboratory Verified Single-Duct VAV System Model with Fan Powered Terminal Units Optimized Using Computational Fluid DynamicsDavis, Michael A. 2010 August 1900 (has links)
Single Duct Variable Air Volume (SDVAV) systems use series and parallel Fan
Powered Terminal Units to control the air flow in conditioned spaces. This research
developed a laboratory verified model of SDVAV systems that used series and parallel
fan terminal units where the fan speeds were controlled by either Silicon Controlled
Rectifiers (SCR) or Electronically Commutated Motors (ECM) motors. As part of the
research, the model was used to compare the performance of the systems and to predict
the harmonics generated by ECM systems. All research objectives were achieved.
The CFD model, which was verified with laboratory measurements, showed the
potential to identify opportunities for improvement in the design of the FPTU and
accurately predicted the static pressure drop as air passed through the unit over the full
operating range of the FPTU.
Computational fluid dynamics (CFD) models of typical a FPTU were developed and
used to investigate opportunities for optimizing the design of FPTUs. The CFD model
identified key parameters required to conduct numerical simulations of FPTU and some of the internal components used to manufacture the units. One key internal component
was a porous baffle used to enhance mixing when primary air and induced air entered
the mixing chamber. The CFD analysis showed that a pressure-drop based on face
velocity model could be used to accurately predict the performance of the FPTU.
The SDVAV simulation results showed that parallel FPTUs used less energy overall
than series systems that used SCR motors as long as primary air leakage was not
considered. Simulation results also showed that series ECM FPTUs used about the same
amount of energy, within 3 percent, of parallel FPTU even when leakage was not considered.
A leakage rate of 10 percent was enough to reduce the performance of the parallel FPTU to the
level of the series SCR system and the series ECM FPTUs outperformed the parallel
FPTUs at all weather locations used in the study.
|
9 |
Modeling and analysis of an air handling unit to improve energy efficiencyLi, Jing 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The Air Handling Unit (AHU), which serves the entire basement of Engineering
and Technology (ET) building on IUPUI campus, had constant set points of discharge
air temperature and supply air static pressure. Two reset schedules were investigated
to determine which was the best control strategy to minimize energy consumption of
the AHU.
In this research, a gray box model was established to create the baseline of energy
consumption with constant set points and predict the energy savings using two di↵erent
reset schedules. The mathematical model was developed in Engineering Equation
Solver (EES). It was validated using two sets of sub hourly real time data. The model
performance was evaluated employing Mean Absolute Percentage Error (MAPE) and
Root Mean Square Deviation (RMSD).
Additionally, uncertainty propagation identified outside air temperature, supply
airflow rate and return air temperature were the key parameters that had an impact
in overall energy consumption.
Discharge air temperature was reset based on return air temperature (RA-T)
with a linear reset schedule from March 4 to March 7. Static pressure was reset
based on the widest open Variable Air Volume (VAV) box damper from March 20 to
March 23. Results indicated that 17% energy savings was achieved using discharge air
temperature reset while the energy consumption reduced by 7% using static pressure
reset.
|
10 |
Holistic Performance Evaluation of the Built Environment: The Olin Building Past, Present & FutureLaseter, Joel Tyler, III 29 January 2019 (has links)
No description available.
|
Page generated in 0.0701 seconds