Spelling suggestions: "subject:"variancereduction techniques"" "subject:"varianzreduktion techniques""
1 |
Variance Reduction for Asian OptionsGalda, Galina Unknown Date (has links)
<p>Asian options are an important family of derivative contracts with a wide variety of applications in commodity, currency, energy, interest rate, equity and insurance markets. In this master's thesis, we investigate methods for evaluating the price of the Asian call options with a fixed strike. One of them is the Monte Carlo method. The accurancy of this method can be observed through variance of the price. We will see that the variance with using Monte Carlo method has to be decreased. The Variance Reduction technique is useful for this aim. We will give evidence of the efficiency of one of the Variance Reduction thechniques - Control Variate method - in a mathematical context and a numerical comparison with the ordinary Monte Carlo method.</p>
|
2 |
Variance Reduction for Asian OptionsGalda, Galina Unknown Date (has links)
Asian options are an important family of derivative contracts with a wide variety of applications in commodity, currency, energy, interest rate, equity and insurance markets. In this master's thesis, we investigate methods for evaluating the price of the Asian call options with a fixed strike. One of them is the Monte Carlo method. The accurancy of this method can be observed through variance of the price. We will see that the variance with using Monte Carlo method has to be decreased. The Variance Reduction technique is useful for this aim. We will give evidence of the efficiency of one of the Variance Reduction thechniques - Control Variate method - in a mathematical context and a numerical comparison with the ordinary Monte Carlo method.
|
3 |
Bias and Variance Reduction in Assessing Solution Quality for Stochastic ProgramsStockbridge, Rebecca January 2013 (has links)
Stochastic programming combines ideas from deterministic optimization with probability and statistics to produce more accurate models of optimization problems involving uncertainty. However, due to their size, stochastic programming problems can be extremely difficult to solve and instead approximate solutions are used. Therefore, there is a need for methods that can accurately identify optimal or near optimal solutions. In this dissertation, we focus on improving Monte-Carlo sampling-based methods that assess the quality of potential solutions to stochastic programs by estimating optimality gaps. In particular, we aim to reduce the bias and/or variance of these estimators. We first propose a technique to reduce the bias of optimality gap estimators which is based on probability metrics and stability results in stochastic programming. This method, which requires the solution of a minimum-weight perfect matching problem, can be run in polynomial time in sample size. We establish asymptotic properties and present computational results. We then investigate the use of sampling schemes to reduce the variance of optimality gap estimators, and in particular focus on antithetic variates and Latin hypercube sampling. We also combine these methods with the bias reduction technique discussed above. Asymptotic properties of the resultant estimators are presented, and computational results on a range of test problems are discussed. Finally, we apply methods of assessing solution quality using antithetic variates and Latin hypercube sampling to a sequential sampling procedure to solve stochastic programs. In this setting, we use Latin hypercube sampling when generating a sequence of candidate solutions that is input to the procedure. We prove that these procedures produce a high-quality solution with high probability, asymptotically, and terminate in a finite number of iterations. Computational results are presented.
|
4 |
Evaluating of path-dependent securities with low discrepancy methodsKrykova, Inna 13 January 2004 (has links)
The objective of this thesis is the implementation of Monte Carlo and quasi-Monte Carlo methods for the valuation of financial derivatives. Advantages and disadvantages of each method are stated based on both the literature and on independent computational experiments by the author. Various methods to generate pseudo-random and quasi-random sequences are implemented in a computationally uniform way to enable objective comparisons. Code is developed in VBA and C++, with the C++ code converted to a COM object to make it callable from Microsoft Excel and Matlab. From the simulated random sequences Brownian motion paths are built using various constructions and variance-reduction techniques including Brownian Bridge and Latin hypercube. The power and efficiency of the methods is compared on four financial securities pricing problems: European options, Asian options, barrier options and mortgage-backed securities. In this paper a detailed step-by-step algorithm is given for each method (construction of pseudo- and quasi-random sequences, Brownian motion paths for some stochastic processes, variance- and dimension- reduction techniques, evaluation of some financial securities using different variance-reduction techniques etc).
|
5 |
Stochastic Volatility Models in Option PricingKalavrezos, Michail, Wennermo, Michael January 2008 (has links)
<p>In this thesis we have created a computer program in Java language which calculates European call- and put options with four different models based on the article The Pricing of Options on Assets with Stochastic Volatilities by John Hull and Alan White. Two of the models use stochastic volatility as an input. The paper describes the foundations of stochastic volatility option pricing and compares the output of the models. The model which better estimates the real option price is dependent on further research of the model parameters involved.</p>
|
6 |
Stochastic Volatility Models in Option PricingKalavrezos, Michail, Wennermo, Michael January 2008 (has links)
In this thesis we have created a computer program in Java language which calculates European call- and put options with four different models based on the article The Pricing of Options on Assets with Stochastic Volatilities by John Hull and Alan White. Two of the models use stochastic volatility as an input. The paper describes the foundations of stochastic volatility option pricing and compares the output of the models. The model which better estimates the real option price is dependent on further research of the model parameters involved.
|
7 |
Pricing methods for Asian optionsMudzimbabwe, Walter January 2010 (has links)
>Magister Scientiae - MSc / We present various methods of pricing Asian options. The methods include Monte Carlo simulations designed using control and antithetic variates, numerical solution of partial differential equation and using lower bounds.The price of the Asian option is known to be a certain risk-neutral expectation. Using the Feynman-Kac theorem, we deduce that the problem of determining the expectation implies solving a linear parabolic partial differential equation. This partial differential equation does not admit explicit solutions due to the fact that the distribution of a sum of lognormal variables is not explicit. We then solve the partial differential equation numerically using finite difference and Monte Carlo methods.Our Monte Carlo approach is based on the pseudo random numbers and not deterministic sequence of numbers on which Quasi-Monte Carlo methods are designed. To make the Monte Carlo method more effective, two variance reduction techniques are discussed.Under the finite difference method, we consider explicit and the Crank-Nicholson’s schemes.
We demonstrate that the explicit method gives rise to extraneous solutions because the stability conditions are difficult to satisfy. On the other hand, the Crank-Nicholson method is unconditionally stable and provides correct solutions.
Finally, we apply the pricing methods to a similar problem of determining the price of a European-style arithmetic basket option under the Black-Scholes framework. We find the optimal lower bound, calculate it numerically and compare this with those obtained by the Monte Carlo and Moment Matching methods.Our presentation here includes some of the most recent advances on Asian options, and we contribute in particular by adding detail to the proofs and explanations. We also
contribute some novel numerical methods. Most significantly, we include an original
contribution on the use of very sharp lower bounds towards pricing European basket
options.
|
8 |
[en] PROBABILISTIC LOAD FLOW VIA MONTE CARLO SIMULATION AND CROSS-ENTROPY METHOD / [pt] FLUXO DE POTÊNCIA PROBABILÍSTICO VIA SIMULAÇÃO MONTE CARLO E MÉTODO DA ENTROPIA CRUZADAANDRE MILHORANCE DE CASTRO 12 February 2019 (has links)
[pt] Em planejamento e operação de sistemas de energia elétrica, é necessário realizar diversas avaliações utilizando o algoritmo de fluxo de potência, para obter e monitorar o ponto de operação da rede em estudo. Em sua utilização determinística, devem ser especificados valores de geração e níveis de carga por barra, bem como considerar uma configuração especifica da rede elétrica. Existe, porém, uma restrição evidente em se trabalhar com algoritmo de fluxo de potência determinístico: não há qualquer percepção do impacto gerado por incertezas nas variáveis de entrada que o algoritmo utiliza. O algoritmo de fluxo de potência probabilístico (FPP) visa extrapolar as limitações impostas pelo uso da ferramenta convencional determinística, permitindo a consideração das incertezas de entrada. Obtém-se maior sensibilidade na avaliação dos resultados, visto que possíveis regiões de operação são mais claramente examinadas. Consequentemente, estima-se o risco do sistema funcionar fora de suas condições operativas nominais. Essa dissertação propõe uma metodologia baseada na simulação Monte Carlo (SMC) utilizando técnicas de amostragem por importância via o método de entropia cruzada. Índices de risco para eventos selecionados (e.g., sobrecargas em equipamentos de transmissão) são avaliados, mantendo-se a precisão e flexibilidade permitidas pela SMC convencional, porém em tempo computacional muito reduzido. Ao contrário das técnicas analíticas concebidas para solução do FPP, que visam primordialmente à elaboração de curvas de densidade de probabilidade para as variáveis de saída (fluxos, etc.) e sempre necessitam ter a precisão obtida comparada à SMC, o método proposto avalia somente as áreas das caudas dessas densidades, obtendo resultados com maior exatidão nas regiões de interesse do ponto de vista do risco operativo. O método proposto é aplicado nos sistemas IEEE 14 barras, IEEE RTS e IEEE 118 barras, sendo os resultados obtidos amplamente discutidos. Em todos os casos, há claros ganhos de desempenho
computacional, mantendo-se a precisão, quando comparados à SMC convencional. As possíveis aplicações do método e suas derivações futuras também fazem parte da dissertação. / [en] In planning and operation of electric energy systems, it is necessary to perform several evaluations using the power flow algorithm to obtain and monitor the operating point of the network under study. Bearing in mind its deterministic use, generation values and load levels per bus must be specified, as well as a specific configuration of the power network. There is, however, an obvious constraint in running a deterministic power flow tool: there is no perception of the impact produced by uncertainties on
the input variables used by the conventional algorithm. The probabilistic power flow (PLF) algorithm aims to solve the limitations imposed by the use of the deterministic conventional tool, allowing the consideration of input uncertainties. Superior sensitivity is obtained in the evaluation of results, as
possible regions of operation are more clearly examined. Consequently, the risk of the system operating outside its nominal conditions is duly estimated. This dissertation proposes a methodology based on Monte Carlo simulation (MCS) using importance sampling techniques via the cross-entropy method. Risk indices for selected events (e.g., overloads on transmission equipment) are evaluated, keeping the same accuracy and flexibility tolerable by the conventional MCS, but in much less computational time. Unlike the FPP
solution obtained by analytical techniques, which primarily aim at assessing probability density curves for the output variables (flows, etc.) and always need to have the accuracy compared to MCS, the proposed method evaluates only the tail areas of these densities, obtaining results with greater accuracy in the regions of interest from the operational risk point of view. The proposed method is applied to IEEE 14, IEEE RTS and IEEE 118 bus systems, and the results are widely discussed. In all cases, there are clear
gains in computational performance, maintaining accuracy when compared to conventional SMC. The possible applications of the method and future developments are also part of the dissertation.
|
9 |
[pt] APLICAÇÕES DO MÉTODO DA ENTROPIA CRUZADA EM ESTIMAÇÃO DE RISCO E OTIMIZAÇÃO DE CONTRATO DE MONTANTE DE USO DO SISTEMA DE TRANSMISSÃO / [en] CROSS-ENTROPY METHOD APPLICATIONS TO RISK ESTIMATE AND OPTIMIZATION OF AMOUNT OF TRANSMISSION SYSTEM USAGE23 November 2021 (has links)
[pt] As companhias regionais de distribuição não são autossuficientes em
energia elétrica para atender seus clientes, e requerem importar a potência
necessária do sistema interligado. No Brasil, elas realizam anualmente o processo
de contratação do montante de uso do sistema de transmissão (MUST)
para o horizonte dos próximos quatro anos. Essa operação é um exemplo real
de tarefa que envolve decisões sob incerteza com elevado impacto na produtividade
das empresas distribuidoras e do setor elétrico em geral. O trabalho
se torna ainda mais complexo diante da crescente variabilidade associada à
geração de energia renovável e à mudança do perfil do consumidor. O MUST é
uma variável aleatória, e ser capaz de compreender sua variabilidade é crucial
para melhor tomada de decisão. O fluxo de potência probabilístico é uma técnica
que mapeia as incertezas das injeções nodais e configuração de rede nos
equipamentos de transmissão e, consequentemente, nas potências importadas
em cada ponto de conexão com o sistema interligado. Nesta tese, o objetivo
principal é desenvolver metodologias baseadas no fluxo de potência probabilístico
via simulação Monte Carlo, em conjunto com a técnica da entropia
cruzada, para estimar os riscos envolvidos na contratação ótima do MUST.
As metodologias permitem a implementação de software comercial para lidar
com o algoritmo de fluxo de potência, o que é relevante para sistemas reais de
grande porte. Apresenta-se, portanto, uma ferramenta computacional prática
que serve aos engenheiros das distribuidoras de energia elétrica. Resultados
com sistemas acadêmicos e reais mostram que as propostas cumprem os objetivos
traçados, com benefícios na redução dos custos totais no processo de
otimização de contratos e dos tempos computacionais envolvidos nas estimativas
de risco. / [en] Local power distribution companies are not self-sufficient in electricity
to serve their customers, and require importing additional energy supply from
the interconnected bulk power systems. In Brazil, they annually carry out the
contracting process for the amount of transmission system usage (ATSU) for
the next four years. This process is a real example of a task that involves
decisions under uncertainty with a high impact on the productivity of the
distributions companies and on the electricity sector in general. The task
becomes even more complex in face of the increasing variability associated with
the generation of renewable energy and the changing profile of the consumer.
The ATSU is a random variable, and being able to understand its variability
is crucial for better decision making. Probabilistic power flow is a technique
that maps the uncertainties of nodal injections and network configuration in
the transmission equipment and, consequently, in the imported power at each
connection point with the bulk power system. In this thesis, the main objective
is to develop methodologies based on probabilistic power flow via Monte Carlo
simulation, together with cross entropy techniques, to assess the risks involved
in the optimal contracting of the ATSU. The proposed approaches allow the
inclusion of commercial software to deal with the power flow algorithm, which is
relevant for large practical systems. Thus, a realistic computational tool that
serves the engineers of electric distribution companies is presented. Results with academic and real systems show that the proposals fulfill the objectives set, with the benefits of reducing the total costs in the optimization process of contracts and computational times involved in the risk assessments.
|
10 |
[pt] ESTIMATIVA DE RISCOS EM REDES ELÉTRICAS CONSIDERANDO FONTES RENOVÁVEIS E CONTINGÊNCIAS DE GERAÇÃO E TRANSMISSÃO VIA FLUXO DE POTÊNCIA PROBABILÍSTICO / [en] RISK ASSESSMENT IN ELECTRIC NETWORKS CONSIDERING RENEWABLE SOURCES AND GENERATION AND TRANSMISSION CONTINGENCIES VIA PROBABILISTIC POWER FLOW24 November 2023 (has links)
[pt] A demanda global por soluções sustentáveis para geração de energia elétrica cresceu rapidamente nas últimas décadas, sendo impulsionada por incentivos fiscais dos governos e investimentos em pesquisa e desenvolvimento de tecnologias. Isso provocou uma crescente inserção de fontes renováveis nas redes elétricas ao redor do mundo, criando novos desafios críticos para as avaliações de desempenho dos sistemas que são potencializados pela intermitência desses recursos energéticos combinada às falhas dos equipamentos de rede. Motivado por esse cenário, esta dissertação aborda a estimativa de risco de inadequação de grandezas elétricas, como ocorrências de sobrecarga em ramos elétricos ou subtensão em barramentos, através do uso do fluxo de potência probabilístico, baseado na simulação Monte Carlo e no método de entropia cruzada. O objetivo é determinar o risco do sistema não atender a critérios operativos, de forma precisa e com eficiência computacional, considerando as incertezas de carga, geração e transmissão. O método é aplicado aos sistemas testes IEEE RTS 79 e IEEE 118 barras, considerando também versões modificadas com a inclusão de uma usina eólica, e os resultados são amplamente discutidos. / [en] The global demand for sustainable solutions for electricity generation has grown rapidly in recent decades, driven by government tax incentives and investments in technology research and development. This caused a growing insertion of renewable sources in power networks around the world, creating new critical challenges for systems performance assessments that are enhanced by the intermittency of these energy resources combined with the failures of network equipment. Motivated by this scenario, this dissertation addresses the estimation of risk of inadequacy of electrical quantities, such as overload occurrences in electrical branches or undervoltage in buses, through the use of probabilistic power flow, based on Monte Carlo simulation and the cross-entropy method. The objective is to determine the risk of the system not meeting operational criteria, precisely and with computational efficiency, considering load, generation and transmission uncertainties. The method is applied to IEEE RTS 79 and IEEE 118 bus test systems, also considering modified versions with the inclusion of a wind power plant, and the results are widely discussed.
|
Page generated in 0.1006 seconds