• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Finite element methods for multiscale/multiphysics problems

Söderlund, Robert January 2011 (has links)
In this thesis we focus on multiscale and multiphysics problems. We derive a posteriori error estimates for a one way coupled multiphysics problem, using the dual weighted residual method. Such estimates can be used to drive local mesh refinement in adaptive algorithms, in order to efficiently obtain good accuracy in a desired goal quantity, which we demonstrate numerically. Furthermore we prove existence and uniqueness of finite element solutions for a two way coupled multiphysics problem. The possibility of deriving dual weighted a posteriori error estimates for two way coupled problems is also addressed. For a two way coupled linear problem, we show numerically that unless the coupling of the equations is to strong the propagation of errors between the solvers goes to zero. We also apply a variational multiscale method to both an elliptic and a hyperbolic problem that exhibits multiscale features. The method is based on numerical solutions of decoupled local fine scale problems on patches. For the elliptic problem we derive an a posteriori error estimate and use an adaptive algorithm to automatically tune the resolution and patch size of the local problems. For the hyperbolic problem we demonstrate the importance of how to construct the patches of the local problems, by numerically comparing the results obtained for symmetric and directed patches.

Page generated in 0.1424 seconds