• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Funcionais paramÃtricos elÃpticos em variedades riemannianas / Elliptic parametric functional in manifolds riemannian

Marcelo Ferreira de Melo 07 August 2009 (has links)
CoordenaÃÃo de AperfeiÃoamento de NÃvel Superior / Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / Neste trabalho, consideramos funcionais paramÃtricos elÃpticos como generalizaÃÃes naturais para o clÃssico funcional Ãrea. Calculamos a primeira variaÃÃo de tais funcionais e, a partir da equaÃÃo de Euler-Lagrange, definimos a curvatura mÃdia anisotrÃpica de uma hipersuperfÃcie imersa em uma variedade Riemanniana como generalizaÃÃo natural da curvatura mÃdia usual. Em seguida, estabelecemos a fÃrmula da segunda variaÃÃo e classificamos as hipersuperfÃcies rotacionalmente simÃtricas que possuem curvatura mÃdia anisotrÃpica constante. A fim de compreender a estabilidade dos exemplo rotacionais,deduzimos a primeira e a segunda fÃrmulas de Minkowski. AlÃm disso, no contexto anisotrÃpico, apresentamos as equaÃÃes fundamentais de Weingarten, Codazzi e Gauss e, por fim, estudamos a harmonicidade da aplicaÃÃo de Gauss. / It is stated that critical points of a parametric elliptic functional in a Riemannian manifold are hypersurfaces with prescrebed anisotropic mean curvature. We prove that the anisotropic Gauss map of surfaces immersed in Euclidean space with constant anisotropic mean curvature is a harmonic map. In the case of rotatioally invariat functionals in some homogeneous three-dimensional ambients, we present a abridged version of a existence result for constant anisotropic mean curvature surfaces as cylinders, spheres, tori and annuli corresponding to the anisotropic analogs of onduloids and nodoids. In the Euclidean case M = R3, examples of stable critical points are provided by the Wulff shapes associated to functional F. Paralleling the case of constant curvature mean spheres, a characterization of Wulff shapes is provided, which answers affirmatively a question posed by M. Koiso and B. Parmer in [13].

Page generated in 0.1217 seconds