• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Curvaturas mÃdias anisotrÃpicas : estabilidade e resultados para hipersuperfÃcies nÃo-convexas / Anisotropic mean curvatures: stability and results for non-convex hypersurfaces

Jonatan Floriano da Silva 28 April 2011 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / Este trabalho consiste em duas partes. Na primeira parte, estudaremos hipersuperfÃcies compactas sem bordo imersas no espaÃo Euclidiano com o quociente das curvaturas mÃdias anisotrÃpicas constante. Provaremos que tais hipersuperfÃcies sÃo pontos crÃticos para um problema variacional de preservar uma combinaÃÃo linear da (k; F)-Ãrea e do (n+1)-volume determinado por M. Demostraremos que a hipersuperfÃcie à (r; k; a; b)-estÃvel se, e somente se, a menos de translaÃÃo e homotetia, ela à a Wulff shape de F (veja SeÃÃo 2.1), sob algumas condiÃÃes acerca de a; b â R. Na segunda parte desse trabalho, obtemos outras caracterizaÃÃes para a Wulff shape envolvendo as curvaturas mÃdias anisotrÃpicas de ordem superior de uma hipersuperfÃ- cie M em Rn+1 e o conjunto W = Rn+1 -UpâM Tp. Os resultados sÃo obtidos para hipersuperfÃcies compactas nÃo convexas satisfazendo W ╪ Ã. / This work consists of two parts. In the first part we deal with a compact hypersurface without boundary immersed in to the Euclidean space with the quotient of anisotropic mean curvatures constant. Such a hypersurface is a critical point for the variational problem preserving a linear combination of the (k; F)-area and (n + 1)-volume enclosed by M. We show that it is (r; k; a; b)-stable if, and only if, up to translations and homotheties, it is the Wulff shape, under some assumptions on a; b â R. In the second part we obtain further characterizations for the Wulff shape involving the anisotropic mean curvatures of higher order of a hypersurface M in Rn+1 and the set W = Rn+1-UpâM Tp. Results are obtained for non-convex compact hypersurfaces satisfying W ╪ Ã.

Page generated in 0.0889 seconds