151 |
Small Grain Variety Comparisons at the Maricopa Agricultural Center in 1985Thompson, R. K., Bobula, J. L. 09 1900 (has links)
No description available.
|
152 |
Summary of Arizona Wheat and Barley Variety Trials (1977-1984)Ottman, Michael J., Thompson, Rex K., Parsons, David K. 09 1900 (has links)
No description available.
|
153 |
1985 Western Plant Breeders Advanced Wheat Yield Trials, Maricopa CountyShantz, Kim 09 1900 (has links)
No description available.
|
154 |
Small Grain Variety Yield Comparisons, Maricopa Agricultural CenterHarper, John, Parsons, David K. 09 1900 (has links)
No description available.
|
155 |
Field Observations on Wheat and Barley, Safford Agricultural CenterClark, Lee J., Thatcher, L. Max 09 1900 (has links)
No description available.
|
156 |
Small Grain Variety Yield Comparison, Maricopa Agricultural CenterCluff, Ronald E., Parsons, David K., Clark, Lee J. 09 1900 (has links)
No description available.
|
157 |
Schubert NumbersKobayashi, Masato 01 May 2010 (has links)
This thesis discusses intersections of the Schubert varieties in the flag variety associated to a vector space of dimension n. The Schubert number is the number of irreducible components of an intersection of Schubert varieties. Our main result gives the lower bound on the maximum of Schubert numbers. This lower bound varies quadratically with n. The known lower bound varied only linearly with n. We also establish a few technical results of independent interest in the combinatorics of strong Bruhat orders.
|
158 |
On an algebro-geometric realization of the cohomology ring of conical symplectic resolutions / 錐的シンプレクティック特異点解消のコホモロジー環の代数幾何学的実現についてHikita, Tatsuyuki 25 May 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第19166号 / 理博第4106号 / 新制||理||1591(附属図書館) / 32158 / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)准教授 加藤 周, 教授 並河 良典, 教授 雪江 明彦 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
|
159 |
Secant varieties of Spinor varieties and of other generalized GrassmanniansGalgano, Vincenzo 18 December 2023 (has links)
Secant varieties are among the main protagonists in tensor decomposition, whose study involves both pure and applied mathematic areas. Despite they have been studied for decades, several aspects of their geometry are still mysterious, among which identifiability and singularity of their points. In this thesis we study the secant varieties of lines of Grassmannians and of Spinor varieties. As first result, we completely determine their posets of orbits under the action of the groups SL and Spin, respectively. Then we solve the problems of identifiability and tangential-identifiability of points in the secant varieties of lines: as a consequence, we also determine the second Terracini locus to a Grassmannian and to a Spinor variety. Our main result concerns the singular locus of the secant variety of lines: we completely determine it for Grassmannians, and we give lower and upper bounds for Spinor varieties. Finally, we partially describe the poset of orbits in the secant variety of lines of any cominuscule variety.
|
160 |
Compactification d'espaces homogènes sphériques sur un corps quelconque / Compactification of spherical homogeneous spaces over an arbitrary fieldHuruguen, Mathieu 29 November 2011 (has links)
Cette thèse porte sur les plongements d'espaces homogènes sphériques sur un corps quelconque. Dans une première partie, on aborde la classification de ces plongements, dans la lignée des travaux de Demazure et bien d'autres sur les variétés toriques, et de Luna, Vust et Knop sur les variétés sphériques. Dans une seconde partie, on généralise en caractéristique positive certains résultats obtenus par Bien et Brion portant sur les plongements complets et lisses qui sont log homogènes, c'est-à-dire dont le bord est un diviseur à croisements normaux et le fibré tangent logarithmique associé est engendré par ses sections globales. Dans une dernière partie, on construit par éclatements successifs une compactification lisse et log homogène explicite du groupe linéaire (différente de celle obtenue par Kausz). En prenant dans cette compactification les points fixes de certains automorphismes, on en déduit alors la construction de compactifications lisses et log homogènes de certains groupes semi-simples classiques. / This thesis is devoted to the study of embeddings of spherical homogeneous spaces over an arbitrary field. In the first part, we address the classification of such embeddings, in the spirit of Demazure and many others in the setting of toric varieties and of Luna, Vust and Knop in the setting of spherical varieties. In the second part, we generalize in positive characteristics some results obtained by Bien and Brion on those complete smooth embeddings that are log homogeneous, i.e., whose boundary is a normal crossing divisor and the associated logarithmic tangent bundle is generated by its global sections. In the last part, we construct an explicit smooth log homogeneous compactification of the general linear group by successive blow-ups (different from the one obtained by Kausz). By taking fixed points of certain automorphisms on this compactification, one gets smooth log homogeneous compactifications of some classical semi-simple groups.
|
Page generated in 0.0335 seconds