11 |
Investigating the role of pyrophosphate fructose 6-phosphate 1-phosphotransferase in phloem loading /Smith, Marthinus Luther. January 2008 (has links)
Thesis (MSc)--University of Stellenbosch, 2008. / Bibliography. Also available via the Internet.
|
12 |
Chemical hydrology of vascular plant growth : role of root-fungus associationsBalogh, Zsuzsanna, January 2006 (has links) (PDF)
Thesis (Ph. D.)--Washington State University, August 2006. / Includes bibliographical references (p. 82-98).
|
13 |
Three-dimensional magnetic resonance imaging of the pulmonary vascular system with rapid gradient echo acquisitionsWielopolski, Piotr Alfred January 1992 (has links)
No description available.
|
14 |
Coupling kinetic models and advection-diffusion equations to model vascular transport in plants, applied to sucrose accumulation in sugarcaneUys, Lafras 12 1900 (has links)
Thesis (PhD (Biochemistry))--University of Stellenbosch, 2009. / ENGLISH ABSTRACT: The sugarcane stalk, besides being the main structural component of the plant, is also the major
storage organ for carbohydrates. Sucrose forms the bulk of stored carbohydrates. Previous
studies have modelled the sucrose accumulation pathway in the internodal storage parenchyma
of sugarcane using kinetic models cast as systems of ordinary differential equations. Typically,
results were analysed with methods such as metabolic control analysis. The present study extends
those original models within an advection-diffusion-reaction framework, requiring the use
of partial differential equations to model sucrose metabolism coupled to phloem translocation.
Let N be a stoichiometric matrix, v a vector of reaction rates, s a vector of species concentrations
and r the gradient operator. Consider a coupled network of chemical reactions where
the species may be advected with velocities, U, or diffuse with coefficients, D, or both. We
propose the use of the dynamic system, s + r (Us) + r (Drs) = Nv;
for a kinetic model where species can exist in different compartments and can be transported
over long distances in a fluid medium, or involved in chemical reactions, or both. Darcy’s
law is used to model fluid flow and allows a simplified, phenomenological approach to be
applied to translocation in the phloem. Similarly, generic reversible Hill equations are used to
model biochemical reaction rates. These are also phenomenological equations, where all the
parameters have operationally defined interpretations.
Numerical solutions to this formulation are demonstrated with time-courses of two toy
models. The first model uses a simple “linear” pathway definition to study the impact of
the system geometry on the solutions. Although this is an elementary model, it is able to
demonstrate the up-regulation of photosynthesis in response to a change in sink demand. The
second model elaborates on the reaction pathway while keeping the same geometry definition as
the first. This pathway is designed to be an abstracted model of sucrose metabolism. Finally,
a realistic model of sucrose translocation, metabolism and accumulation is presented, spanning
eight internodes and four compartments. Most of the parameters and species concentrations
used as initial values were obtained from experimental measurements.
To analyse the models, a method of sensitivity analysis called the Fourier Amplitude Sensitivity
Test (FAST) is employed. FAST calculates the contribution of the possible variation in
a parameter to the total variation in the output from the model, i.e. the species concentrations
and reaction rates.
The model predicted that the most important factors affecting sucrose accumulation are the
synthesis and breakdown of sucrose in futile cycles and the rate of cross-membrane transport
of sucrose. The models also showed that sucrose moves down a concentration gradient from
the leaves to the symplast, where it is transported against a concentration gradient into the
vacuole. There was a net gain in carbohydrate accumulation in the realistic model, despite an
increase in futile cycling with internode maturity.
The model presented provides a very comprehensive description of sucrose accumulation
and is a rigorous, quantitative framework for future modelling and experimental design. / AFRIKAANSE OPSOMMING: Benewens sy strukturele belang, is die suikerrietstingel ook die primêre bergingsorgaan vir koolhidrate.
Die oorgrote meerderheid van hierdie koolhidrate word as sukrose opgeberg. Studies
tot dusver het die metabolisme rondom sukroseberging in die parenchiem van die onderskeie
stingellitte as stelsels gewone differensiaalvergelykings gemodelleer. Die resultate is ondermeer
met metaboliese kontrole-analise geanaliseer. Hierdie studie brei uit op die oorspronklike
modelle, deur gebruik te maak van ’n stromings-diffusie-reaksie-raamwerk. Parsiële differensiaalvergelykings
is geformuleer om die metabolisme van sukrose te koppel aan die vloei in die
floëem.
Gestel N is ’n stoichiometriese matriks, v ’n vektor van reaksiesnelhede, s ’n vektor van
spesie-konsentrasies en r die differensiaalvektoroperator. Beskou ’n netwerk van gekoppelde
reaksies waar die onderskeie spesies stroom met snelhede U, of diffundeer met koëffisiënte D,
of onderhewig is aan beide prosesse. Dit word voorgestel dat die dinamiese stelsel,
_s + r (Us) + r (Drs) = Nv;
gebruik kan word vir ’n kinetiese model waar spesies in verskeie kompartemente kan voorkom
en vervoer kan word oor lang afstande saam met ’n vloeier, of kan deelneem aan chemiese
reaksies, of albei. Darcy se wet word gebruik om die vloeier te modeller en maak dit moontlik
om ’n eenvoudige, fenomenologiese benadering toe te pas op floëem-vervoer. Eweneens word
generiese, omkeerbare Hill-vergelykings gebruik om biochemiese reaksiesnelhede te modelleer.
Hierdie vergelykings is ook fenomenologies van aard en beskik oor parameters met ’n duidelike
fisiese betekenis.
Hierdie omvattende raamwerk is ondermeer gedemonstreer met behulp van numeriese oplossings
van twee vereenvoudigde modelle as voorbeelde. Die eerste model het bestaan uit ’n
lineêre reaksienetwerk en is gebruik om die geometrie van die stelsel te bestudeer. Alhoewel
hierdie ’n eenvoudige model is, kon dit die toename in fotosintese as gevolg van ’n verandering
in metaboliese aanvraag verklaar. Die tweede model het uitgebrei op die reaksieskema
van die eerste, terwyl dieselfde stelselgeometrie behou is. Hierdie skema is ontwerp as ’n abstrakte
weergawe van sukrosemetabolisme. Ten slotte is ’n realistiese model van sukrosevervoer, metabolisme en berging ontwikkel wat agt stingellitte en vier kompartemente omvat. Die meeste
parameters en konsentrasies van biochemiese spesies wat as aanvanklike waardes in die model
gebruik is, is direk vanaf eksperimentele metings verkry.
Die Fourier Amplitude Sensitiwiteits-Toets (FAST) is gebruik om die modelle te analiseer.
FAST maak dit moontlik om die bydrae van parameters tot variasie in modeluitsette soos
reaksiesnelhede en die konsentrasies van chemiese spesies te bepaal.
Die model het voorspel dat sintese en afbraak van sukrose in ’n futiele siklus, asook transmembraan
sukrosevervoer, die belangrikste faktore is wat sukrose-berging beïnvloed. Die model
het ook getoon dat sukrose saam met ’n konsentrasiegradiënt beweeg vanaf die blare tot by
die stingelparenchiem-sitoplasma, van waar dit teen ’n konsentrasiegradiënt na die vogselholte
(vakuool) vervoer word. Volgens die realistiese model was daar ’n netto toename in die totale
hoeveelheid koolhidrate, ten spyte van ’n toename in die futile siklus van sukrose in die ouer
stingellitte.
Die model wat in hierdie proefskrif voorgestel word verskaf ’n uitgebreide, omvattende
beskrywing van sukroseberging. Voorts stel dit ’n rigiede kwantitatiewe raamwerk daar vir
toekomstige modellering en eksperimentele ontwerp.
|
15 |
Stretch-Dependant Tonic Force Maintenance in Rabbit Epigastric ArteryBerg, Krystina Michelle 01 January 2006 (has links)
The contractile state of vascular smooth muscle (VSM) plays a key role in blood pressure regulation. Abnormal VSM contractility characterizes hypertension and understanding the regulatory mechanisms of VSM may provide some insights to specific treatment of hypertension. Upon muscle stimulation, Ca2+, myosin light chain (MLC) phosphorylation, crossbridge cycling rates and force increase to high levels, but with time, force is maintained while all other parameters of muscle activation fall to low levels. Thus, contraction is divided temporally into early (phasic) and late (tonic) phases, as determined by the underlying regulatory mechanism. Muscles with more phasic characteristics have a higher peak phase while tonic muscles have both high peak and tonic. However, these muscles have similar contractile increases in Ca2+ despite their substantial differences in force production during the tonic phase of contraction. Myosin light chain phosphatase (MLCP) inhibition by RhoA Kinase (ROK) has been shown to contribute to this increased force production without simultaneous increases in calcium in a process known as Ca2+ sensitization.Epigastric artery (EA) has a unique regulatory mechanism controlled by the degree of stretch applied on the artery which produces an increase in tonic force maintenance. Tonic force in EA is blocked equally at all lengths by the ROK inhibitor Y-27632, suggesting ROK is the main mechanism of signal transduction activated.MLC-p is increased during basal compared to unstretched conditions for epigastric but not femoral artery (FA). Pharmacological MT depolymerization due to Colchicine incubation has been shown to release RhoGEF, a RhoA activator, and resulted in increased tonic force and MLC-p which were both inhibited by a ROK inhibitor.Additionally, KC1-stimulation appeared to activate MAPK and ROK pathways, while stretch alone activated a yet undetermined pathway, possibly ILK. KC1-induced contraction in FA activated TRP sensitive calcium channels during both peak and tonic phases. However, stretch in EA does not induce additional calcium influx. Thus, these data support the conclusion that an increase in length activates ROK and other kinases resulting in tonic force maintenance in EA.
|
16 |
Analyse fonctionnelle des gènes WOX les plus conservés chez Arabidopsis thaliana / Fonctional analysis of the most conserved WOX genes in Arabidopsis thaliana.Denis, Erwan 04 April 2012 (has links)
Chez les plantes supérieures, l’organogénèse est principalement post-embryonnaire et assurée par les méristèmes. Les familles de gènes CLE (CLAVATA3/ENDOSPERMSURROUNDING REGION related) et WOX (WUSCHEL-LIKE HOMEOBOX) sont des régulateurs majeurs de l’activité des méristèmes. Des analyses phylogénétiques des gènes WOX de différentes espèces ont identifié trois groupes d’orthologie, dont le groupe WOX13OG. Ce dernier contient le seul gène WOX d’Ostreococcus tauri, les trois gènes WOX de Physcomitrella patens, ainsi que trois des gènes WOX parmi les quinze que compte Arabidopsis thaliana. L’objectif de ma thèse a été de caractériser la fonction des gènes du groupe WOX13 OG chez A. thaliana.Parmi les mutants nuls identifiés pour ces gènes, seul le mutant wox14 présente des phénotypes forts, à savoir un retard de transition florale et des défauts de développement vasculaire. Ces résultats sont en accord avec l’induction de l’expression de WOX14 à la jonction des faisceaux vasculaires lors de la transition florale. Les résultats indiquent que WOX14 est impliqué dans le contrôle du nombre de faisceaux vasculaires initiés lors de cette dernière. La restauration conjointe de la transition florale et du nombre de faisceaux vasculaires, par complémentation du mutant wox14 ou application de gibbérellines (GA),suggère un lien direct entre ces deux processus. Cette étude nous a permis d’identifier le gène CLE46 comme étant dérégulé dans le mutant wox14. Son expression dans les cellules du xylème, associée à l’augmentation du nombre de faisceaux vasculaires chez wox14, suggèrent que CLE46 est un élément d’une voie de signalisation de contrôle du nombre de faisceaux vasculaires. L’importance des interactions WOX-CLE dans le développement vasculaire est soulignée par l’induction de WOX4 et WOX14 par le peptide CLE41. Les analyses du transcriptome du mutant wox14 révèlent que la signalisation des GA est déficiente. Ce qui confirme les résultats de la complémentation du phénotype wox14 par les GA. De plus, le gène GA3ox1 a été identifié comme une cible potentielle de régulation de la biosynthèse de GA par le gène WOX14. / Whilst primary meristems are initiated during embryogenesis, in higher plants additionalsecondary meristems initiate post-embryonically and contribute to the plant architecture andthe vascular strand development. Differentiation of the plant vascular cambium into xylemand phloem was shown to be regulated by cell to cell communication. The large CLE(CLAVATA3/ENDOSPERM SURROUNDING REGION related) signaling peptide familyand the WOX (WUSCHEL-LIKE HOMEOBOX) transcription factor family are thought to beconserved regulators of stem cell fate. In this thesis we report the presence of supernumeraryvascular bundles in the young inflorescence stem of the wox14 mutant. Our data indicate thatWOX14 prevents additional cambium cell to differentiate into vascular bundles during floraltransition. Moreover, the data suggest that vascular differentiation and floral transition arelinked. Consistently, WOX14 expression is induced within the connecting vascular strandduring floral transition. Furthermore, the application of gibberellins (GA) fully rescued boththe floral transition and the vascular bundle phenotype of the wox14 mutants. A detail analysisof GA biosynthesis and target genes showed that WOX14 controls the amount of bioactiveGA within the vasculature. However, WOX14 is also specifically expressed in the phloem ofthe inflorescence stem indicating a function in late vascular bundle development. We alsoshowed that not only WOX4 but also WOX14 are the target of the CLE41 peptide duringvascular development. Furthermore, the data indicate that another CLE gene, namely CLE46,is misregulated in the wox14 mutant. These results suggest that CLE46 might be the firstidentified CLE signal from the xylem that impacts vascular differentiation.
|
17 |
Rôle du système vasculaire dans le contrôle de l'hématopoïèse chez la drosophile : étude de la voie de signalisation fibroblast growth factor / Role of the vascular system in controlling drosophila hematopoiesis : insight of the Fibroblast Growth Factor signaling pathwayLetourneau, Manon 24 September 2018 (has links)
Chez les mammifères adultes, les cellules souches et les progéniteurs hématopoïétiques (CSPH) présents dans la moelle osseuse sont à l'origine de la production des cellules sanguines tout au long de la vie. L'auto-renouvellement, la prolifération et la différenciation des CSPH sont sous le contrôle d'un microenvironnement cellulaire spécifique appelé " niche ". Deux niches sont identifiés dans la moelle osseuse : une niche endostéale et vasculaire. Les processus moléculaires contrôlant les communications cellulaires entre les niches et les HSPC sont complexes et demeurent mal connues. Du fait de la conservation des facteurs de transcription et des voies de signalisations entre les mammifères et la drosophile, l'organe hématopoïétique de la drosophile : la glande lymphatique s'est avéré être un excellent modèle pour étudier les communications cellulaires entre les niches et les CSPH. La glande lymphatique est accolée au tube cardiaque (système vasculaire), qui contrôle la morphologie et la fonction du PSC (Posterior Signaling Center), un centre de signalisation contrôlant la différenciation des cellules immunitaires/sanguines dans la glande lymphatique. Au cours de mes travaux de thèse, j'ai réalisé un crible fonctionnel in vivo, pour déterminer si indépendamment de son effet sur le PSC, les cellules du tube cardiaque étaient capables de contrôler directement l'homéostasie de la glande lymphatique. La réalisation de ce crible m'a permis d'identifier quatre ligands produits par les cellules du tube cardiaque et requis au maintien des progéniteurs hématopoïétiques dans la glande lymphatique, notamment le ligand Branchless de la voie de signalisation FGF (Fibroblast Growth Factor). La perte de fonction du ligand FGF/Branchless dans le tube cardiaque ou du récepteur FGF/Breathless dans les progéniteurs hématopoïétiques entraine une différenciation accrue et une diminution du pool de progéniteurs dans la glande lymphatique. Mes résultats indiquent que le tube cardiaque a un rôle équivalent à une niche pour contrôler l'hématopoïèse dans la glande lymphatique et que la voie de signalisation FGF joue un rôle clé dans ces communications cellulaires. [...] / In adult mammals, hematopoietic stem cell and progenitors (HSPC) are present in the bone marrow and produce all blood cell type along the life. Renewal, proliferation and differentiation of the HSPC are tightly control by a specific microenvironment called the "niche", composed by an endosteal and a vascular niche. Molecular processes controlling cellular communications between niches and HSPC are complex and remain poorly understood. Since many transcription factors and signalization pathway are conserved in controlling hematopoiesis both in mammals and Drosophila, the Drosophila hematopoietic organ: the lymph gland became an excellent model to decipher cellular communications between the niche and HSPC. The lymph gland is aligned the cardiac tube (vascular system), which control the size and the function of the PSC (Posterior Signaling Center). The PSC is a signaling center controlling the differentiation of immune/blood cells in the lymph gland. During my PhD, I performed an in vivo functional screen to determine whether independently of its role on the PSC, cardiac cells were able to control directly the lymph gland homeostasis. The realization of this screen, allowed me to identify four ligands produced by cardiac tube cells and required to maintain lymph gland hematopoietic progenitors. One of this ligand is a FGF (Fibroblast Growth Factor) ligand Branchless. Knock down of FGF/branchless ligand in cardiac tube cells or FGF/Breathless receptor in hematopoietic progenitors lead to an increase in immune cells differentiation at the expense of the progenitor pool. My results establish that the cardiac tube plays a role similar to a niche in controlling lymph gland homeostasis and the FGF pathway plays a key role in this cellular communication. [...]
|
18 |
Modelling the auxin-mediated vein formation system in plant leavesSlingerland, Martin Jacob (Marc), University of Lethbridge. Faculty of Arts and Science January 2007 (has links)
The plant hormone auxin is involved in a wide range of developmental phenomena in
plants. It carries out many of its effects through a signalling network involving the regulation
of specific genes, including those involved in its own polar transport between cells.
These transporters are able to be redistributed between cell faces, causing the asymmetric
auxin transport that is a key requirement for the formation of vein patterns in leaves.
In this thesis I describe the development of a biochemical kinetics-based model of auxin
signalling and transport in a single cell, which displays biologically plausible responses
to auxin application. The single-cell model then serves as the basis for a multicell model
of auxin-mediated vein formation at a very early stage of leaf formation in Arabidopsis
thaliana. / ix, 73 leaves : ill. ; 29 cm.
|
19 |
Abundance patterns for vascular epiphytes in a tropical secondary forest, Costa RicaKull, Matthew Austin. January 2007 (has links)
Thesis (M.S.)--State University of New York at Binghamton, Department of Biological Sciences, 2007. / Includes bibliographical references.
|
20 |
Coronary artery disease risk factors among fire-fighters in the Western Cape ProvinceAchmat, Ghaleelullah January 2017 (has links)
Magister Sport, Recreation and Exercise Science - MSRES / The work demands involved in fire-fighting place significant stress on the
cardiovascular system. Cardiovascular disease is the leading cause of on-duty death among
fire fighters and is a major cause of morbidity. This study investigated the prevalence of
coronary artery disease risk factors among career fire fighters in the Western Cape.
|
Page generated in 0.0664 seconds