Spelling suggestions: "subject:"folliculogenesis""
31 |
Mesenchyme homeobox 2 regulation of fetal endothelial progenitor cell functionGohn, Cassandra Rebekah 19 June 2017 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In the United States, 10% of pregnancies are complicated by diabetes
mellitus (DM). Intrauterine DM exposure can have long-lasting implications for
the fetus, including cardiovascular morbidity. Previously, we showed that fetal
endothelial colony forming cells (ECFCs) from DM pregnancies have decreased
vessel-forming ability and increased senescence. However, the molecular
mechanisms responsible for this dysfunction remain largely unknown. The
objective of this thesis was to understand how Mesenchyme Homeobox 2
(MEOX2) interacts with pathways that regulate cell cycle progression and
migration, and how this interaction results in impaired vasculogenesis in DM
exposed ECFCs.
We tested the hypothesis that upregulated MEOX2 in DM-exposed
ECFCs decreases network formation through impairments in senescence, cell
cycle progression, migration, and adhesion. MEOX2 is a transcription factor
which inhibits angiogenesis by upregulating cyclin dependent kinase inhibitors.
Here, data show that nuclear MEOX2 is increased in DM-exposed ECFCs.
Lentiviral-mediated overexpression of MEOX2 in control ECFCs increased
network formation, altered cell cycle progression, increased senescence, and
enhanced migration. In contrast, MEOX2-knockdown in DM-exposed ECFCs decreased network formation and migration, while cell cycle progression and
senescence were unchanged.
Adhesion and integrin expression defects were evaluated as mechanisms
by which MEOX2 altered ECFC migration. While MEOX2-overexpression did not
alter adhesion or cell surface integrin levels in control cells, MEOX2
overexpression in DM-exposed ECFCs resulted in an increase in α6 integrin
surface expression. Similarly, MEOX2-knockdown in DM-exposed ECFCs did not
alter adhesion, though did reduce α6 integrin surface expression and total
cellular α6 mRNA and protein levels.
Together, these data suggest that alterations in cell cycle progression and
senescence are not responsible for the disrupted vasculogenesis of DM-exposed
ECFCs. Importantly, these data suggest that altered migration may be a key
mechanism involved and that altered cell surface levels of the α6 integrin may
modify migratory capacity. Moreover, these data suggest that the α6 integrin may
be a previously unrecognized transcriptional target of MEOX2. Ultimately, while
initially believed to be maladaptive, these data suggest that increased nuclear
MEOX2 in DM-exposed ECFCs may serve a protective role, enabling vessel
formation despite exposure to a DM intrauterine environment.
|
32 |
Single-cell transcriptomic analysis of vascular progenitors and the roles of Vegf signaling and Ets1 in vascular developmentCasie Chetty, David S. 27 September 2020 (has links)
No description available.
|
33 |
Nanofiber-based therapy for diabetic wound healing: a mechanistic studyCho, Hongkwan January 2012 (has links)
No description available.
|
34 |
DESIGNING CELL-RESPONSIVE HYDROGELS FOR BIOACTIVE TISSUE ENGINEERING CONSTRUCTSJones, Derek R. 03 June 2015 (has links)
No description available.
|
35 |
Microscale Additive Manufacturing of Collagen Cell Culture ScaffoldsBell, Alex E. January 2015 (has links)
No description available.
|
36 |
Modulation of Angiogenesis by Laminins and Heparan SulfateJakobsson, Lars January 2007 (has links)
<p>Blood vessels transport blood with essential nutrients and oxygen to the cells in our body. In a healthy adult, formation of new vessels (angiogenesis) occurs only in case of tissue repair and growth. Physiological angiogenesis requires precise regulation of multiple signaling components, a process which is deregulated in a number of pathological conditions, such as cancer. This thesis is focused on the role of laminins, heparan sulfate proteoglycans (HSPGs) and vascular endothelial growth factor (VEGF)-A in regulation of vascular development and angiogenesis. As a model, we have used embryonic stem cells that differentiate to form blood vessels in a manner faithfully recapitulating the <i>in vivo</i> processes. </p><p>We show that the basement membrane (BM) protein laminin-111 promotes maturation of endothelial cells in the presence of fibroblast growth factor-2, a known endothelial cell mitogen. However, embryonic stem cells are able to differentiate into endothelial cells also in the absence of laminin deposition in the vascular BM. Sprouting angiogenesis, induced by VEGF-A, is also not strictly dependent on laminin deposition. On the other hand, in the absence of laminins, vessels are enlarged. These data suggest an important role for laminins in regulation of the vessel diameter.</p><p>We also show that HSPGs serve as coreceptors for VEGF-A to regulate vascular development. The mode of presentation of HSPGs, <i>in</i> <i>cis</i> (on the endothelial cell) or <i>in</i> <i>trans</i> (on an adjacent cell such as pericytes), is critical in regulation of VEGF receptor-2 activation and stimulation of vascular development. Binding of VEGF-A to HSPGs <i>in</i> <i>trans</i> leads to accumulation of activated VEGFR-2 in endothelial cells and to prolonged signaling. This demonstrates a potential role for HSPGs in regulation of receptor trafficking and signaling kinetics, with possible implications also for other HS-binding ligand/receptor systems.</p>
|
37 |
Modulation of Angiogenesis by Laminins and Heparan SulfateJakobsson, Lars January 2007 (has links)
Blood vessels transport blood with essential nutrients and oxygen to the cells in our body. In a healthy adult, formation of new vessels (angiogenesis) occurs only in case of tissue repair and growth. Physiological angiogenesis requires precise regulation of multiple signaling components, a process which is deregulated in a number of pathological conditions, such as cancer. This thesis is focused on the role of laminins, heparan sulfate proteoglycans (HSPGs) and vascular endothelial growth factor (VEGF)-A in regulation of vascular development and angiogenesis. As a model, we have used embryonic stem cells that differentiate to form blood vessels in a manner faithfully recapitulating the in vivo processes. We show that the basement membrane (BM) protein laminin-111 promotes maturation of endothelial cells in the presence of fibroblast growth factor-2, a known endothelial cell mitogen. However, embryonic stem cells are able to differentiate into endothelial cells also in the absence of laminin deposition in the vascular BM. Sprouting angiogenesis, induced by VEGF-A, is also not strictly dependent on laminin deposition. On the other hand, in the absence of laminins, vessels are enlarged. These data suggest an important role for laminins in regulation of the vessel diameter. We also show that HSPGs serve as coreceptors for VEGF-A to regulate vascular development. The mode of presentation of HSPGs, in cis (on the endothelial cell) or in trans (on an adjacent cell such as pericytes), is critical in regulation of VEGF receptor-2 activation and stimulation of vascular development. Binding of VEGF-A to HSPGs in trans leads to accumulation of activated VEGFR-2 in endothelial cells and to prolonged signaling. This demonstrates a potential role for HSPGs in regulation of receptor trafficking and signaling kinetics, with possible implications also for other HS-binding ligand/receptor systems.
|
38 |
PREVASCULAR CELL CONDENSATIONS FOR MODULAR TISSUE ENGINEERINGAlt, Daniel Scott January 2020 (has links)
No description available.
|
39 |
Rôle de la CuZn superoxyde dismutase dans la néovascularisation en réponse à l'ischémieGroleau, Jessika 05 1900 (has links)
L’athérosclérose est à l’origine d’importantes obstructions vasculaires. La
sévérité de l’ischémie tissulaire provoquée par l’athérosclérose dépend en partie de la
capacité de l’organisme à former de nouveaux vaisseaux (néovascularisation). Les
mécanismes de néovascularisation sont modulés par la balance oxydo-réductive. Une
exacerbation du stress oxydant est retrouvée dans tous les facteurs de risque
cardiovasculaire, et en particulier lors du vieillissement. Au niveau vasculaire, la
CuZnSOD est la principale enzyme antioxydante. Cependant, son rôle spécifique
dans le vieillissement vasculaire et dans le développement de nouveaux vaisseaux en
réponse à l’ischémie n’est pas connu. Nos hypothèses de recherche sont: 1) qu’une
absence de CuZnSOD diminue la néovascularisation réparatrice en réponse à
l’ischémie 2) que cette diminution de la néovascularisation est dûe au vieillissement
de la vasculature affectant à la fois les cellules endothéliales matures et les cellules
progénitrices endothéliales.
Nous avons démontré qu’une déficience en CuZnSOD diminue
significativement la néovascularisation en réponse à l’ischémie. Cette diminution de
néovascularisation est associée à une augmentation du stress oxydant et une réduction
de la biodisponibilité du NO. La déficience en CuZnSOD réduit significativement le
nombre de EPCs (moelle, rate). De plus, ces EPCs présentent une augmentation
significative des niveaux de stress oxydant, une diminution de la production de NO et
une capacité réduite à migrer et à s’intégrer à un réseau tubulaire. Fait important, il
iv
est possible d’améliorer la néovascularisation des souris déficientes en CuZnSOD par
une supplémentation en EPCs provenant de souris contrôles.
Nous avons également démontré que la récupération du flot sanguin suivant
l’ischémie est significativement réduite par l’âge. À la fois chez les jeunes et les
vieilles souris, la déficience en CuZnSOD mène à une réduction additionnelle de la
néovascularisation. Fait intéressant, le potentiel néovasculaire des jeunes souris
déficiente en CuZnSOD est similaire à celui des vieilles souris contrôles. Les niveaux
de stress oxydant sont également augmentés de façon similaire dans ces deux groupes
de souris. L’âge et la déficience en CuZnSOD sont tous deux associés à une réduction
du nombre d’EPCs isolées de la moelle et de la rate. L’effet de l’âge seul sur la
fonction des EPCs est modeste. Par contre, la déficience en CuZnSOD en condition
de vieillissement est associée à d’importants effets délétères sur l’activité
fonctionnelle des EPCs.
En résumé, nos résultats suggèrent que la protection contre le stress oxydant
par la CuZnSOD est essentielle pour préserver la fonction des EPCs et la
néovascularisation réparatrice en réponse à l’ischémie. Le défaut de
néovascularisation observé en absence de CuZnSOD est associé à un vieillissement
vasculaire accéléré. Nos résultats suggèrent que dans le contexte du vieillissement, la
CuZnSOD a un rôle encore plus important pour limiter les niveaux de stress oxydant,
préserver la fonction des EPCs et maintenir l’intégrité des tissus ischémiques. / When atherosclerotic vascular obstructions are so extensive that direct
revascularization techniques cannot be undertaken successfully, the severity of
residual tissue ischemia will depend in large part on the ability of the organism to
spontaneously develop new blood vessels (neovascularization). The mechanisms
involved in neovascularization depend on the oxidative stress balance. Increased
oxidative stress is a common feature of all cardiovascular risk factors and particularly
aging. In the vascular wall, CuZnSOD is the predominant antioxidant enzyme.
Nevertheless, its specific role in vascular aging and new blood vessels formation is
currently unknown. Accordingly, we hypotheze that 1) CuZnSOD deficiency reduces
neovascularization in response to ischemia 2) this reduction is partly due to vascular
aging affecting mature endothelial cells and endothelial progenitor cells.
We have demonstrated that CuZnSOD deficiency significantly reduces
neovascularization in response to ischemia. This reduction is associated with
increased oxidative stress and reduced NO bioavailability. CuZnSOD deficiency
significantly decreases EPCs number (bone marrow, spleen). Moreover, these EPCs
present significant increased oxidative stress levels, reduced NO production and
decreased migration and incorporation into tubular-like structures capacities.
Importantly, neovascularization in CuZnSOD deficient-mice can be rescued by an
EPCs supplementation from control mice.
vii
We have also demonstrated that the blood flow recovery following ischemia was
significantly reduced with aging. Both in old and young mice, CuZnSOD deficiency
led to a further reduction of neovascularization. Interestingly, the resulting
neovascularization potential in young CuZnSOD-deficient mouse was similar to that
of an older wild type mouse. Oxidative stress levels were also increased to similar
levels in these two groups. Both aging and CuZnSOD deficiency were associated
with reduced number of bone marrow and peripheral EPCs. The effect of moderate
aging alone on specific functional activities of EPCs was modest. However,
CuZnSOD deficiency was associated with severe age-dependent defect in EPC
fucntional activities.
In summary, our resultats suggest that CuZnSOD protection against
oxidative stress is essential for EPC functional activities and neovascularization in
response to ischemia. The defective neovascularization observed in CuZnSODdeficient
mice is associated with accelerated vascular aging. Our results suggest
that in aging context, CuZnSOD has a critical role limiting increased oxidative
stress and protecting both EPC functional activities and ischemic tissues integrity.
|
40 |
Cell-Matrix Tensional Forces Within Cell-Dense Type I Collagen Oligomer Tissue Constructs Facilitate Rapid In Vitro Vascularization of Dense Tissue Constructs for Skin EngineeringKevin P. Buno (5929535) 03 January 2019 (has links)
The skin provides protection and maintains homeostasis, making it essential for survival. Additionally, skin has the impressive ability to grow, as observed in children as they grow into adults. However, skin functions are compromised in large skin defects, a serious problem that can be fatal. The gold standard treatment is to use an autologous skin graft; however, due to donor site morbidity and limited availability, when full-thickness defects surpass 2% total body surface area (TBSA), skin substitutes are preferred. Unfortunately, current skin substitutes on the market: are slow to revascularize (2+ weeks), have low graft survival rates (<50% take), and lead to significant scarring and contracture. Fortunately, a promising solution is to prevascularize engineered skin substitutes in vitro, which has been shown to facilitate rapid tissue integration upon grafting by providing an intact vascular network that readily connects to the host’s circulation. However, current approaches for prevascularizing tissue constructs require long in vitro culture times or implement low extracellular matrix (ECM) density tissue constructs – both which are problematic in a clinical setting. To address this, we implemented a novel multitissue interface culture model to define the design parameters that were essential for rapid vascularization of soft tissue constructs in vitro. Here, we identified endothelial colony forming cell (ECFC) density and maintenance of cell-matrix tensional forces as important factors for rapid in vitro tissue vascularization (18% vessel volume percentage after 3 days of culture). We then applied these parameters to achieve rapid in vitro vascularization of dense, oligomer tissue constructs (12, 20, and 40 mg/mL). We demonstrated, for the first time, rapid in vitro vascularization at 3 days within dense matrices (ECM concentration > 10 mg/mL). Lastly, a rat full-thickness excisional wound model was developed to determine the acellular densified oligomer’s (20 and 40 mg/mL) ability to resist wound contraction and facilitate a wound healing response (recellularization and vascularization) when grafted into wounds. Future work will implement the vascularized, dense tissue constructs into the developed animal model to assess the vascularized graft’s efficacy on treating wounds to reduce scarring and contracture outcomes.
|
Page generated in 0.126 seconds