• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 4
  • 4
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 46
  • 25
  • 20
  • 14
  • 12
  • 11
  • 9
  • 9
  • 9
  • 9
  • 8
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Mesenchyme homeobox 2 regulation of fetal endothelial progenitor cell function

Gohn, Cassandra Rebekah 19 June 2017 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In the United States, 10% of pregnancies are complicated by diabetes mellitus (DM). Intrauterine DM exposure can have long-lasting implications for the fetus, including cardiovascular morbidity. Previously, we showed that fetal endothelial colony forming cells (ECFCs) from DM pregnancies have decreased vessel-forming ability and increased senescence. However, the molecular mechanisms responsible for this dysfunction remain largely unknown. The objective of this thesis was to understand how Mesenchyme Homeobox 2 (MEOX2) interacts with pathways that regulate cell cycle progression and migration, and how this interaction results in impaired vasculogenesis in DM exposed ECFCs. We tested the hypothesis that upregulated MEOX2 in DM-exposed ECFCs decreases network formation through impairments in senescence, cell cycle progression, migration, and adhesion. MEOX2 is a transcription factor which inhibits angiogenesis by upregulating cyclin dependent kinase inhibitors. Here, data show that nuclear MEOX2 is increased in DM-exposed ECFCs. Lentiviral-mediated overexpression of MEOX2 in control ECFCs increased network formation, altered cell cycle progression, increased senescence, and enhanced migration. In contrast, MEOX2-knockdown in DM-exposed ECFCs decreased network formation and migration, while cell cycle progression and senescence were unchanged. Adhesion and integrin expression defects were evaluated as mechanisms by which MEOX2 altered ECFC migration. While MEOX2-overexpression did not alter adhesion or cell surface integrin levels in control cells, MEOX2 overexpression in DM-exposed ECFCs resulted in an increase in α6 integrin surface expression. Similarly, MEOX2-knockdown in DM-exposed ECFCs did not alter adhesion, though did reduce α6 integrin surface expression and total cellular α6 mRNA and protein levels. Together, these data suggest that alterations in cell cycle progression and senescence are not responsible for the disrupted vasculogenesis of DM-exposed ECFCs. Importantly, these data suggest that altered migration may be a key mechanism involved and that altered cell surface levels of the α6 integrin may modify migratory capacity. Moreover, these data suggest that the α6 integrin may be a previously unrecognized transcriptional target of MEOX2. Ultimately, while initially believed to be maladaptive, these data suggest that increased nuclear MEOX2 in DM-exposed ECFCs may serve a protective role, enabling vessel formation despite exposure to a DM intrauterine environment.
32

Single-cell transcriptomic analysis of vascular progenitors and the roles of Vegf signaling and Ets1 in vascular development

Casie Chetty, David S. 27 September 2020 (has links)
No description available.
33

Nanofiber-based therapy for diabetic wound healing: a mechanistic study

Cho, Hongkwan January 2012 (has links)
No description available.
34

DESIGNING CELL-RESPONSIVE HYDROGELS FOR BIOACTIVE TISSUE ENGINEERING CONSTRUCTS

Jones, Derek R. 03 June 2015 (has links)
No description available.
35

Microscale Additive Manufacturing of Collagen Cell Culture Scaffolds

Bell, Alex E. January 2015 (has links)
No description available.
36

Modulation of Angiogenesis by Laminins and Heparan Sulfate

Jakobsson, Lars January 2007 (has links)
<p>Blood vessels transport blood with essential nutrients and oxygen to the cells in our body. In a healthy adult, formation of new vessels (angiogenesis) occurs only in case of tissue repair and growth. Physiological angiogenesis requires precise regulation of multiple signaling components, a process which is deregulated in a number of pathological conditions, such as cancer. This thesis is focused on the role of laminins, heparan sulfate proteoglycans (HSPGs) and vascular endothelial growth factor (VEGF)-A in regulation of vascular development and angiogenesis. As a model, we have used embryonic stem cells that differentiate to form blood vessels in a manner faithfully recapitulating the <i>in vivo</i> processes. </p><p>We show that the basement membrane (BM) protein laminin-111 promotes maturation of endothelial cells in the presence of fibroblast growth factor-2, a known endothelial cell mitogen. However, embryonic stem cells are able to differentiate into endothelial cells also in the absence of laminin deposition in the vascular BM. Sprouting angiogenesis, induced by VEGF-A, is also not strictly dependent on laminin deposition. On the other hand, in the absence of laminins, vessels are enlarged. These data suggest an important role for laminins in regulation of the vessel diameter.</p><p>We also show that HSPGs serve as coreceptors for VEGF-A to regulate vascular development. The mode of presentation of HSPGs, <i>in</i> <i>cis</i> (on the endothelial cell) or <i>in</i> <i>trans</i> (on an adjacent cell such as pericytes), is critical in regulation of VEGF receptor-2 activation and stimulation of vascular development. Binding of VEGF-A to HSPGs <i>in</i> <i>trans</i> leads to accumulation of activated VEGFR-2 in endothelial cells and to prolonged signaling. This demonstrates a potential role for HSPGs in regulation of receptor trafficking and signaling kinetics, with possible implications also for other HS-binding ligand/receptor systems.</p>
37

Modulation of Angiogenesis by Laminins and Heparan Sulfate

Jakobsson, Lars January 2007 (has links)
Blood vessels transport blood with essential nutrients and oxygen to the cells in our body. In a healthy adult, formation of new vessels (angiogenesis) occurs only in case of tissue repair and growth. Physiological angiogenesis requires precise regulation of multiple signaling components, a process which is deregulated in a number of pathological conditions, such as cancer. This thesis is focused on the role of laminins, heparan sulfate proteoglycans (HSPGs) and vascular endothelial growth factor (VEGF)-A in regulation of vascular development and angiogenesis. As a model, we have used embryonic stem cells that differentiate to form blood vessels in a manner faithfully recapitulating the in vivo processes. We show that the basement membrane (BM) protein laminin-111 promotes maturation of endothelial cells in the presence of fibroblast growth factor-2, a known endothelial cell mitogen. However, embryonic stem cells are able to differentiate into endothelial cells also in the absence of laminin deposition in the vascular BM. Sprouting angiogenesis, induced by VEGF-A, is also not strictly dependent on laminin deposition. On the other hand, in the absence of laminins, vessels are enlarged. These data suggest an important role for laminins in regulation of the vessel diameter. We also show that HSPGs serve as coreceptors for VEGF-A to regulate vascular development. The mode of presentation of HSPGs, in cis (on the endothelial cell) or in trans (on an adjacent cell such as pericytes), is critical in regulation of VEGF receptor-2 activation and stimulation of vascular development. Binding of VEGF-A to HSPGs in trans leads to accumulation of activated VEGFR-2 in endothelial cells and to prolonged signaling. This demonstrates a potential role for HSPGs in regulation of receptor trafficking and signaling kinetics, with possible implications also for other HS-binding ligand/receptor systems.
38

PREVASCULAR CELL CONDENSATIONS FOR MODULAR TISSUE ENGINEERING

Alt, Daniel Scott January 2020 (has links)
No description available.
39

Rôle de la CuZn superoxyde dismutase dans la néovascularisation en réponse à l'ischémie

Groleau, Jessika 05 1900 (has links)
L’athérosclérose est à l’origine d’importantes obstructions vasculaires. La sévérité de l’ischémie tissulaire provoquée par l’athérosclérose dépend en partie de la capacité de l’organisme à former de nouveaux vaisseaux (néovascularisation). Les mécanismes de néovascularisation sont modulés par la balance oxydo-réductive. Une exacerbation du stress oxydant est retrouvée dans tous les facteurs de risque cardiovasculaire, et en particulier lors du vieillissement. Au niveau vasculaire, la CuZnSOD est la principale enzyme antioxydante. Cependant, son rôle spécifique dans le vieillissement vasculaire et dans le développement de nouveaux vaisseaux en réponse à l’ischémie n’est pas connu. Nos hypothèses de recherche sont: 1) qu’une absence de CuZnSOD diminue la néovascularisation réparatrice en réponse à l’ischémie 2) que cette diminution de la néovascularisation est dûe au vieillissement de la vasculature affectant à la fois les cellules endothéliales matures et les cellules progénitrices endothéliales. Nous avons démontré qu’une déficience en CuZnSOD diminue significativement la néovascularisation en réponse à l’ischémie. Cette diminution de néovascularisation est associée à une augmentation du stress oxydant et une réduction de la biodisponibilité du NO. La déficience en CuZnSOD réduit significativement le nombre de EPCs (moelle, rate). De plus, ces EPCs présentent une augmentation significative des niveaux de stress oxydant, une diminution de la production de NO et une capacité réduite à migrer et à s’intégrer à un réseau tubulaire. Fait important, il iv est possible d’améliorer la néovascularisation des souris déficientes en CuZnSOD par une supplémentation en EPCs provenant de souris contrôles. Nous avons également démontré que la récupération du flot sanguin suivant l’ischémie est significativement réduite par l’âge. À la fois chez les jeunes et les vieilles souris, la déficience en CuZnSOD mène à une réduction additionnelle de la néovascularisation. Fait intéressant, le potentiel néovasculaire des jeunes souris déficiente en CuZnSOD est similaire à celui des vieilles souris contrôles. Les niveaux de stress oxydant sont également augmentés de façon similaire dans ces deux groupes de souris. L’âge et la déficience en CuZnSOD sont tous deux associés à une réduction du nombre d’EPCs isolées de la moelle et de la rate. L’effet de l’âge seul sur la fonction des EPCs est modeste. Par contre, la déficience en CuZnSOD en condition de vieillissement est associée à d’importants effets délétères sur l’activité fonctionnelle des EPCs. En résumé, nos résultats suggèrent que la protection contre le stress oxydant par la CuZnSOD est essentielle pour préserver la fonction des EPCs et la néovascularisation réparatrice en réponse à l’ischémie. Le défaut de néovascularisation observé en absence de CuZnSOD est associé à un vieillissement vasculaire accéléré. Nos résultats suggèrent que dans le contexte du vieillissement, la CuZnSOD a un rôle encore plus important pour limiter les niveaux de stress oxydant, préserver la fonction des EPCs et maintenir l’intégrité des tissus ischémiques. / When atherosclerotic vascular obstructions are so extensive that direct revascularization techniques cannot be undertaken successfully, the severity of residual tissue ischemia will depend in large part on the ability of the organism to spontaneously develop new blood vessels (neovascularization). The mechanisms involved in neovascularization depend on the oxidative stress balance. Increased oxidative stress is a common feature of all cardiovascular risk factors and particularly aging. In the vascular wall, CuZnSOD is the predominant antioxidant enzyme. Nevertheless, its specific role in vascular aging and new blood vessels formation is currently unknown. Accordingly, we hypotheze that 1) CuZnSOD deficiency reduces neovascularization in response to ischemia 2) this reduction is partly due to vascular aging affecting mature endothelial cells and endothelial progenitor cells. We have demonstrated that CuZnSOD deficiency significantly reduces neovascularization in response to ischemia. This reduction is associated with increased oxidative stress and reduced NO bioavailability. CuZnSOD deficiency significantly decreases EPCs number (bone marrow, spleen). Moreover, these EPCs present significant increased oxidative stress levels, reduced NO production and decreased migration and incorporation into tubular-like structures capacities. Importantly, neovascularization in CuZnSOD deficient-mice can be rescued by an EPCs supplementation from control mice. vii We have also demonstrated that the blood flow recovery following ischemia was significantly reduced with aging. Both in old and young mice, CuZnSOD deficiency led to a further reduction of neovascularization. Interestingly, the resulting neovascularization potential in young CuZnSOD-deficient mouse was similar to that of an older wild type mouse. Oxidative stress levels were also increased to similar levels in these two groups. Both aging and CuZnSOD deficiency were associated with reduced number of bone marrow and peripheral EPCs. The effect of moderate aging alone on specific functional activities of EPCs was modest. However, CuZnSOD deficiency was associated with severe age-dependent defect in EPC fucntional activities. In summary, our resultats suggest that CuZnSOD protection against oxidative stress is essential for EPC functional activities and neovascularization in response to ischemia. The defective neovascularization observed in CuZnSODdeficient mice is associated with accelerated vascular aging. Our results suggest that in aging context, CuZnSOD has a critical role limiting increased oxidative stress and protecting both EPC functional activities and ischemic tissues integrity.
40

Cell-Matrix Tensional Forces Within Cell-Dense Type I Collagen Oligomer Tissue Constructs Facilitate Rapid In Vitro Vascularization of Dense Tissue Constructs for Skin Engineering

Kevin P. Buno (5929535) 03 January 2019 (has links)
The skin provides protection and maintains homeostasis, making it essential for survival. Additionally, skin has the impressive ability to grow, as observed in children as they grow into adults. However, skin functions are compromised in large skin defects, a serious problem that can be fatal. The gold standard treatment is to use an autologous skin graft; however, due to donor site morbidity and limited availability, when full-thickness defects surpass 2% total body surface area (TBSA), skin substitutes are preferred. Unfortunately, current skin substitutes on the market: are slow to revascularize (2+ weeks), have low graft survival rates (<50% take), and lead to significant scarring and contracture. Fortunately, a promising solution is to prevascularize engineered skin substitutes in vitro, which has been shown to facilitate rapid tissue integration upon grafting by providing an intact vascular network that readily connects to the host’s circulation. However, current approaches for prevascularizing tissue constructs require long in vitro culture times or implement low extracellular matrix (ECM) density tissue constructs – both which are problematic in a clinical setting. To address this, we implemented a novel multitissue interface culture model to define the design parameters that were essential for rapid vascularization of soft tissue constructs in vitro. Here, we identified endothelial colony forming cell (ECFC) density and maintenance of cell-matrix tensional forces as important factors for rapid in vitro tissue vascularization (18% vessel volume percentage after 3 days of culture). We then applied these parameters to achieve rapid in vitro vascularization of dense, oligomer tissue constructs (12, 20, and 40 mg/mL). We demonstrated, for the first time, rapid in vitro vascularization at 3 days within dense matrices (ECM concentration > 10 mg/mL). Lastly, a rat full-thickness excisional wound model was developed to determine the acellular densified oligomer’s (20 and 40 mg/mL) ability to resist wound contraction and facilitate a wound healing response (recellularization and vascularization) when grafted into wounds. Future work will implement the vascularized, dense tissue constructs into the developed animal model to assess the vascularized graft’s efficacy on treating wounds to reduce scarring and contracture outcomes.

Page generated in 0.126 seconds