1 |
Detection algorithms and FPGA implementations for SC-FDMA uplink receiversHänninen, T. (Tuomo) 29 June 2018 (has links)
Abstract
The demand in mobile broadband communications is increasing dramatically. It is expected that 1000 times more mobile-network capacity will be needed within 10 years. Multiple-input, multiple-output (MIMO) antenna configuration and spatial multiplexing are among the essential techniques for reaching the targets. This creates motivation for study of advanced receivers for combating inter-antenna interference (IAI) and inter-symbol interference (ISI). While various receiver structures have been extensively considered for MIMO receivers, the emphasis has been on those operating in downlink orthogonal frequency-division multiple access (OFDM) systems, wherein ISI is not a problem.
Advanced receiver structures for single-carrier frequency-division multiple access (SC-FDMA) uplink systems were studied and analysed. Various receivers were compared via MATLAB simulations, with the objective being to gain solid understanding of how they perform in different channel environments. An efficient combination of IAI and ISI equalisation for SC-FDMA receivers is proposed. The proposed receiver architecture is shown to be a considerable improvement over the conventional linear minimum mean-square error (LMMSE) receiver. Several MIMO detector algorithms and their performance–complexity characteristics are presented. The K-best algorithm with a list size of 8 is shown to be the best option for practical MIMO detector implementation of this receiver in the 4x4 MIMO 64-level quadrature amplitude modulation (QAM) scenario.
The second objective involved examining the implementation aspects of the 8-best receiver to achieve good understanding of the complexity of various implementation architectures. It emerged that avoiding the sorting operation in the 8-best list sphere detector (LSD) tree-search algorithm implementation is not recommendable in the 4x4 MIMO 64-QAM scenario. Several field-programmable gate array (FPGA) implementations were carried out, with a range of high-level synthesis (HLS) tools. It is shown that HLS tools have improved significantly and are especially favourable for prototyping of large designs. Additionally, the importance of FPGA technology selection is addressed. Smaller silicon technology should be exploited if base-station baseband processing power consumption is to be minimised. The potential performance or complexity-related gain with the latest FPGAs should be taken into account in comparison of the performance–complexity characteristics of the algorithms. Differences of a few tens of per cent in estimated complexity or performance between two algorithms are often below the threshold of what can be gained or lost in the practical implementation process. / Tiivistelmä
Tiheään asuttujen kaupunkien uudet langattomat palvelut tarvitsevat tietoliikenneverkkoja, jotka mahdollistavat suuremman tiedonsiirtonopeuden ja kapasiteetin kuin sen, jonka nykyiset mobiiliverkot voivat tarjota. On arveltu, että mobiiliverkkojen kapasiteetin tarve tuhatkertaistuu seuraavan kymmenen vuoden aikana. Tuhatkertainen kapasiteetti on arvioitu saavutettavan kasvattamalla kolmea eri osa-aluetta kymmenkertaiseksi: taajuusspektrin määrä, spektrin käytön tehokkuus sekä tukiasematiheys. Tämä väitöskirja keskittyy spektrin käytön tehokkuuden kasvattamiseen. Moniantennitoteutus (multiple-input multiple-output, MIMO) on siinä välttämätön. MIMO-tekniikkaa hyödyntävien solukkojärjestelmien tukiasemavastaanottimissa tarvitaan melko monimutkainen kanavakorjain sekä ilmaisin, joiden algoritmien optimointi ja toteutus ymmärretään vielä sangen puutteellisesti.
Väitöskirjatutkimuksen päätavoitteena on tutkia edistyksellisiä vastaanotinrakenteita, joilla saavutetaan LTE-A-standardin tavoitetiedonsiirtonopeus kohtuullisella kompleksisuudella. Työssä keskitytään ns. nousevaan siirtosuuntaan (uplink) eli päätelaitteesta tukiasemaan tapahtuvaan tiedonsiirtoon, jossa käytetään yhden kantoaallon taajuusjakomonikäyttötekniikkaa (single-carrier frequency-division multiple-access, SC-FDMA) ortognaalisen taajuusjakomonikäytön (orthogonal frequency division multiple access, OFDMA) sijaan. Eri vastaanotinrakenteita ja näiden ilmaisinalgoritmeja vertaillaan tietokonesimuloinnein MATLAB-ympäristössä. Väitöskirjassa ehdotetaan kaksiosaista vastaanotinrakennetta, jossa antennien välinen keskinäishäiriö (inter antenna interference, IAI) ja symbolien välinen keskinäisvaikutus (intersymbol interference, ISI) poistetaan kahdessa eri vaiheessa. Tietokoneimulaatiot osoittavat ko. rakenteen parantavan suorituskykyä huomattavasti perinteiseen lineaariseen keskineliövirheen minimoivaan (linear minimum mean square error, LMMSE) vastaanottimeen verrattuna. Nk. K parasta polkua valitsevan MIMO-ilmaisinalgoritmin listan koolla kahdeksan todetaan tarjoavan 4x4 MIMO 64-tasoisen kvadratuuriamplitudimodulaation (quadrature amplitude modulation, QAM) ympäristössä parhaan kompromissin suorituskyvyn ja kompleksisuuden suhteen.
Käytännön toteutettavuuden kannalta keskitytään ohjelmoitavaan digitaalipiiritoteutukseen (field-programmable gate array, FGPA) ja ns. korkean tason synteesi (high-level synthesis, HLS) -työkalujen käyttöön vastaanottimen suunnittelussa. K parasta polkua valitsevan MIMO-ilmaisinalgoritmin arkkitehtuurivertailut osoittavat, että sinänsä vaativaa lajittelualgoritmia ei aina kannata yrittää välttää kirjallisuudessa aikaisemmin ehdotetulla ratkaisulla. Useita eri HLS työkaluja käytetään FPGA toteutuksissa ja todetaan että työkalut ovat kehittyneet huomattavasti viimeisen kahdeksan vuoden aikana. Lisäksi todetaan, että 16 nm viivanleveyden piireillä voidaan saavuttaa noin 15 % suurempi ilmaisunopeus ja 60 % pienempi tehonkulutus verrattuna 28 nm viivanleveyttä käyttäviin piireihin. Erityisesti potentiaali tehonkulutuksen minimoiseksi kannattaa hyödyntää, mikäli signaalinkäsittely näyttelee merkittävää roolia vastaanottimen kokonaistehonkulutuksessa. Kokonaisuutena todetaan, että toteutukseen liittyvät valinnat sekä vaikutus lopputulokseen, tulisi ottaa huomioon jo algoritmien valinnassa. Pieni ero kahden eri algoritmin suorituskyvyn välillä häviää helposti toteutusvaiheen ratkaisujen vaikutusten alle.
|
2 |
CMOS time-to-digital converter structures for the integrated receiver of a pulsed time-of-flight laser rangefinderNissinen, I. (Ilkka) 25 October 2011 (has links)
Abstract
The aim of this thesis was to develop time-to-digital converters (TDC) for the integrated receiver of a pulsed time-of-flight (TOF) laser rangefinder aiming at cm-level accuracy over an input range of 10 m – 15 m. A simple structure, a high integration level and low power consumption are the desired features for such a TDC. From the pulsed TOF laser rangefinder point of view an integrated receiver consisting of both the TDC and the receiver channel on the same die offers the possibility of manufacturing these laser rangefinders with a high integration level and at a low price to fulfil the needs of mass industrial markets.
The heart of the TDC is a CMOS ring oscillator, the clock frequency of which is used to calculate the full clock cycles between timing signals, the positions of the timing signals inside the clock period being determined by storing the state of the phase of the ring oscillator for each timing signal. This will improve the resolution of the TDC. Also, additional delay lines are used to generate multiple timing signals, each having a time difference of a fraction of that of the ring oscillator. This will further improve the resolution of the whole TDC. To achieve stable results regardless of temperature and supply voltage variations, the TDC is locked to an on-chip reference voltage, or the resolution of the TDC is calibrated before the actual time interval measurement. The systematic walk error in the receiver channel caused by amplitude variation in the received pulse is compensated for by the TDC measuring the slew rate of the received pulse. This time domain compensation method is not affected by the low supply voltage range of modern CMOS technologies.
Three TDC prototypes were tested. A single-shot precision standard deviation of 16 ps (2.4 mm) and a power consumption of 5.3 mW/channel were achieved at best over an input range of 100 ns (15 m). The temperature drifts of an on-chip voltage reference-locked TDC and a TDC based on the calibration method were 90 ppm/°C and 0.27 ps/°C, respectively. The results also showed that a pulsed TOF laser rangefinder with cm-level accuracy over a 0 – 15 m input range can be realized using the integrated receiver with the time domain walk error compensation described here. / Tiivistelmä
Väitöskirjatyön tavoitteena oli kehittää aika-digitaalimuunninrakenteita valopulssin kulkuajan mittaukseen perustuvan lasertutkan integroituun vastaanottimeen. Tavoitteena oli saavuttaa senttimetriluokan tarkkuus 10 m – 15 m mittausalueella koko lasertutkan osalta. Aika-digitaalimuuntimelta vaaditaan yksinkertaista rakennetta, korkeaa integroimisastetta ja matalaa tehonkulutusta. Integroitu vastaanotin sisältää sekä aika-digitaalimuuntimen että vastaanotinkanavan ja tarjoaa mahdollisuuden korkeasti integroidun lasertutkan valmistukseen halvalla teollisuuden massamarkkinoiden tarpeisiin.
Aika-digitaalimuuntimen ytimenä toimii monivaiheinen CMOS-rengasoskillaattori. Aika-digitaalimuunnos perustuu rengasoskillaattorin täysien kellojaksojen laskentaan laskurilla ajoitussignaalien välillä. Lisäksi rengasoskillaatorin jokaisesta vaiheesta otetaan näyte ajoitussignaaleilla niiden paikkojen määrittämiseksi kellojakson sisällä, jolloin aika-digitaalimuuntimen erottelutarkkuutta saadaan parannettua. Erottelutarkkuutta parannetaan lisää viivästämällä ajoitussignaaleja viive-elementeillä ja muodostamalla näin useita erillisiä ajoitussignaaleja, joiden väliset viive-erot ovat murto-osa rengasoskillaattorin viive-elementin viiveestä. Aika-digitaalimuunnin stabiloidaan käyttöjännite- ja lämpötilavaihteluja vastaan lukitsemalla se integroidun piirin sisäiseen jännitereferenssiin, tai sen erottelutarkkuus määritetään ennen varsinaista aikavälinmittausta erillisellä kalibrointimittauksella. Vastaanotetun valopulssin amplitudivaihtelun aiheuttama systemaattinen ajoitusvirhe integroidussa vastaanotinkanavassa kompensoidaan mittaamalla vastaanotetun valopulssin nousunopeus aika-digitaalimuuntimella. Tällainen aikatasoon perustuva kompensointimetodi on myös suorituskykyinen nykyisissä matalakäyttöjännitteisissä CMOS-teknologioissa.
Työssä valmistettiin ja testattiin kolme aika-digitaalimuunninprototyyppiä. Muuntimien kertamittaustarkkuuden keskihajonta oli parhaimmillaan 16 ps (2,4 mm) ja tehonkulutus alle 5,3 mW/kanava mittausetäisyyden olessa alle 100 ns (15 m). Sisäiseen jännitereferenssiin lukitun aika-digitaalimuuntimen lämpötilariippuvuudeksi mitattiin 90 ppm/°C ja kalibrointimenetelmällä saavutettiin 0,27 ps/°C lämpötilariipuvuus. Työssä saavutetut tulokset osoittavat lisäksi, että valopulssin kulkuajan mittaukseen perustuvalla lasertutkalla on saavutettavissa senttimetriluokan tarkkuus 0 – 15 m mittausalueella käyttämällä tässä työssä esitettyä integroitua vastaanotinta ja aikatason ajoitusvirhekompensointia.
|
3 |
Joint multiuser power allocation and iterative multi-antenna receiver designTervo, V. (Valtteri) 20 January 2015 (has links)
Abstract
This thesis concentrates on joint optimization of transmit power allocation and receive filtering in multiuser, multi-antenna communications. Due to the increasing number of wireless devices, the design of energy-efficient communication links is becoming increasingly important. In cellular mobile communications, reducing the average power consumption in uplink transmission is beneficial for users in order to extend battery life and, hence, energy efficiency in general. However, the power consumption of the high power amplifier (HPA) at the transmitter depends on the peak power of the transmission. This thesis focuses on power allocation problems for single-carrier (SC) frequency division multiple access (FDMA) and orthogonal FDMA (OFDMA) transmission assuming iterative reception.
The goal in the first scheme presented in this thesis is to reduce the average power consumption by designing a power allocation method that takes into account the convergence properties of an iterative receiver in multiuser uplink communications. The proposed scheme can guarantee that the desired quality of service (QoS) is achieved after a sufficient number of iterations.
Reducing the peak-to-average power ratio (PAPR) in any transmission system is beneficial because it allows the use of inexpensive, energy-efficient power amplifiers. The goal in the second scheme presented in this thesis is to control the PAPR of the transmitted signal. Hence, in addition to the QoS constraint, the instantaneous PAPR constraint is derived for SC-FDMA and OFDMA transmission. Moreover, a statistical approach is considered in which the power variance of the transmitted waveform is controlled. The QoS and PAPR constraints are considered jointly and, therefore, the proposed power allocation strategy jointly takes into account the channel quality and the PAPR characteristics of the power amplifier. However, the PAPR constraint can be adopted to any SC-FDMA or OFDMA framework and it is not restricted to the scheme presented in this thesis. The objective of the optimization problems considered throughout the thesis is to minimize the sum power. The majority of the derived constraints are non-convex and therefore, two alternative successive convex approximations (SCAs) are derived for all the non-convex constraints considered.
The numerical results show that the proposed power allocation strategies can significantly reduce the average transmission power of users while allowing flexible PAPR control. Hence, the proposed methods can be used to extend battery life for users and especially improve the QoS at the cell edges. / Tiivistelmä
Väitöskirjassa tutkitaan lähettimessä tapahtuvan tehoallokoinnin sekä vastaanottimessa tapahtuvan signaalin suodatuksen yhteisoptimointia monikäyttöön suunnatussa langattomassa moniantennikommunikaatiossa. Langattomien laitteiden lukumäärän kasvaessa energiatehokkuuden merkitys tiedonsiirtolinkkien suunnittelussa korostuu. Soluihin perustuvassa langattomassa tietoliikenteessä keskimääräisen tehonkulutuksen pienentäminen ylälinkkilähetyksessä (käyttäjältä tukiasemaan) on tärkeää käyttäjän kannalta, sillä se pidentää laitteen akun kestoa. Lähettimen tehovahvistimen (high power amplifier (HPA)) tehonkulutus on kuitenkin verrannollinen lähetyksen huipputehoon. Väitöskirjassa luodaaan uusia menetelmiä sekä vertaillaan tehoallokointia yhden kantoaallon taajuustason monikäyttöön (single carrier frequency division multiple access (SC-FDMA)) ja ortogonaalisen taajuustason monikäyttöön (orthogonal FDMA (OFDMA)) perustuvissa lähetysteknologioissa.
Työn ensimmäisessä osiossa tavoitteena on keskimääräisen tehonkulutuksen pienentäminen monen käyttäjän ylälinkkikommunikaatiossa suunnittelemalla tehoallokointimenetelmä, joka ottaa huomioon iteratiivisen vastaanottimen konvergenssiominaisuudet. Työssä ehdotettu menetelmä takaa vastaanotetun informaation halutun laadun (quality of service (QoS)) riittävän monen vastaanottimessa tehdyn iteraation jälkeen.
Huipputehon ja keskitehon suhteen (peak to average power ratio (PAPR)) pienentäminen missä tahansa lähetyksessä on hyödyllistä, sillä sen ansiosta voidaan käyttää energiatehokkaampia ja halvempia tehovahvistimia. Työn jälkimmäisessä osiossa tavoitteena on kontrolloida lähetetyn signaalin huipputehon ja keskitehon suhdetta. Työn ensimmäisessä osiossa esitetyn QoS-rajoitteen lisäksi tehoallokointia rajoitetaan symbolisekvenssikohtaisella PAPR-rajoitteella SCFDMA- ja OFDMA-lähetyksessä. Lisäksi esitetään tilastollinen menetelmä, jossa rajoitetaan lähetetyn signaalin tehon varianssia. Kun käytetään yhtäaikaisesti QoS- ja PAPR-rajoitteita, voidaan tiedonsiirtokanavaan suunnitella optimaalinen tehoallokointi ottaen huomioon tehovahvistimen epälineaarisuudet. Työssä esitetty PAPR-rajoite on kuitenkin geneerinen, ja se voidaan sovittaa mihin tahansa SCFDMA- tai OFDMA- optimointikehykseen. Työssä esitettävien optimointiongelmien tavoitteena on käyttäjien summatehon minimointi. Suurin osa työssä esiintyvistä ongelmista on ei-konvekseja, joten siinä esitetään kaksi vaihtoehtoista peräkkäinen konveksi approksimaatio (successive convex approximation (SCA)) -menetelmää kaikille ei-konvekseille rajoitteille.
Numeeriset tulokset osoittavat, että esitetyt tehoallokointimenetelmät pienentävät merkittävästi keskimääräistä tehonkulutusta mahdollistaen lisäksi adaptiivisen PAPR-kontrolloinnin. Väitöskirjassa esitettyjen menetelmien avulla voidaan pidentää mobiilikäyttäjien akun kestoa sekä erityisesti parantaa solun reunakäyttäjien palvelun laatua.
|
Page generated in 0.0663 seconds