1 |
Design And Implementation Of A Broadband I-q Vector Modulator And A Feedforward Linearizer For V/uhf BandUnlu Ozkaya, Ayse 01 February 2010 (has links) (PDF)
Considering the requirements of the commercial and military applications on amplitude and phase linearity, it is necessary to reduce nonlinearity of the amplifiers. There are several linearization techniques that are used to reduce nonlinearity effects. Feedforward linearization technique is known as one of the best linearization methods due to its superior linearization performance and broadband operation. Vector modulators which allows amplitude and phase modulation simultaneously, is the most important component of a feedforward system.
In this thesis, first of all a broadband V/UHF vector modulator designed and implemented. Then a feedforward system is investigated and implemented using the designed vector modulator for V/UHF band.
|
2 |
Novel Impedance Tuner, Phase Shifter, And Vector Modulators Using Rf Mems TechnologyUnlu, Mehmet 01 March 2009 (has links) (PDF)
This thesis presents the theory, design, fabrication, and measurement results of novel reconfigurable impedance tuner, phase shifter, and vector modulators using the RF MEMS technology. The presented circuits are based on triple stub topology, and it is shown both theoretically and experimentally in this thesis that it is possible to control the insertion phase and amplitude of the input signal simultaneously using this topology. The presented circuits are implemented using an in-house, surface micromachining fabrication process developed at METU, namely METU RF MEMS Fabrication Process, which is implemented using six masks on quartz substrates. The RF MEMS impedance tuner is designed to operate in 6-20 GHz frequency band, and it covers the Smith Chart with 1331 impedance points. The measurement results of 729 impedance points of the fabricated impedance tuner show that a wide Smith Chart coverage is obtained in the entire band. The RF MEMS phase shifter is designed to cover 0-360 degrees range 10 degree steps at 15 GHz center frequency. The measurement results of the fabricated phase shifter show that the average phase error is 1.7 degrees, the average insertion loss is -3.1 dB, and the average return loss is -19.3 dB for the measured 21 phase states. The phase shifter can also work up to 30 GHz and 40 GHz with average insertion losses of -5 dB and -8 dB, respectively. The designed RF MEMS vector modulator operates in 22.5-27.5 GHz band, and it has 3 amplitude and 8 phase states. The measurement results of the fabricated vector modulator show that the amplitude error is 0.5 dB, the phase error is 4 degrees, and the return loss is -15 dB on average among the 24 measured states at each of 22.5, 25, and 27.5 GHz frequencies.
|
3 |
Mmic Vector Modulator DesignAltuntas, Mehmet 01 December 2004 (has links) (PDF)
In this thesis the design of a MMIC vector modulator operating in 9GHz-10GHz band is investigated and performed. Sub-sections of the vector modulator are 4-port (4.8dB) 1200 phase shift relative to the dedicated port power splitter, digitally controlled variable gain amplifier and the in phase power combiner.
Alternative methods are searched in order to implement the structure properly in the given frequency band. The final design is appropriate for MMIC structure.
4-port (4.8dB) 1200 phase shift relative to the dedicated port power splitter is studied. The performance is simulated and optimized first on Microwave Office, then on Advanced Design System (ADS) tools.
Various methods to design a digitally controlled variable gain amplifier are studied. The final topology is simulated and optimized on ADS tool.
An in phase power combiner is designed. The performance of the combiner is simulated and optimized on ADS tool.
Lumped element models are replaced with CASWELL H-40 models to achieve a MMIC structure and a layout is drawn. The finalized vector modulator is simulated and optimized on ADS tool.
Key words: MMIC, Vector Modulator, Digitally Controlled Variable Gain Amplifier, Layout
|
4 |
Hochfrequenzschaltungen zur Einstellung von Amplitude und PhaseMayer, Uwe 04 June 2012 (has links) (PDF)
Die vorliegende Arbeit ist der analytischen Untersuchung und Weiterentwicklung von Methoden und Schaltungen zur Einstellung der Signalphase und -amplitude gewidmet. Hierbei wird zum Ziel gesetzt, die Leistungsfähigkeit dieser Schaltungen als analoge Hochfrequenz-Baugruppen in Empfangs- und Sendeschaltkreisen mit einem vergleichbaren oder geringerem schaltungstechnischen Aufwand und Strombedarf zu verbessern und dies anhand von Implementierungsbeispielen zu bestätigen.
Die Dämpfungsglied-Topologien , T, überbrücktes T und X werden modelliert und hinsichtlich der Phasenbeeinflussung analysiert, sodass eine Bewertung ihrer Eignung durchgeführt werden kann. Weiterhin wird ein innovativer Ansatz zur Linearisierung der Steuerkennlinie vorgestellt und mit Hilfe einer Beispielschaltung mit einem Phasenfehler von 3 ° und einem Steuerlinearitätsfehler von 0,35 dB innerhalb der 1 dB Grenzfrequenz und einem Steuerbereich von 20 dB nachgewiesen.
Die Arbeit bietet darüber hinaus eine analytische Betrachtung zu aktiven steuerbaren Verstärkern, welche die besondere Eignung der Gilbert-Zelle aufzeigt und eine geeignete Ansteuerschaltung ableitet. Am Beispiel nach diesem Prinzip entworfener Schaltkreise werden Phasenfehler von nur 0,4 ° innerhalb eines besonders hohen Stellbereichs von 36 dB demonstriert, wodurch eine Vergrößerung des Stellbereichs um den Faktor 4 und eine Verbesserung des Phasenfehlers um den Faktor 2 im Vergleich zum Stand der Technik erreicht wurde.
Es wird der Zirkulator-Phasenschieber maßgeblich durch eine neuartige geeignete Ansteuerung verbessert. Damit werden die sonst für die
Amplitudenbeeinflussung im Wesentlichen verantwortlichen Varaktoren überflüssig, ohne dabei den schaltungstechnischen Aufwand zu erhöhen. Eine Messung der entsprechenden Schaltung bestätigt dies mit einem Amplitudenfehler von nur 0,9 dB für einen Phasenstellbereich von 360 °, was einer Verringerung des Fehlers um den Faktor 3 im Vergleich zu herkömmlichen Zirkulator-Phasenschiebern entspricht.
Abschließend wird der Funktionsnachweis mehrerer entworfener Vektor-Modulatoren mit einer effektiven Genauigkeit von bis zu 6 bit in Einzelschaltungen, Hybridaufbauten und schließlich im Rahmen eines vollständig integrierten Empfängerschaltkreises erbracht. Dieser erzielt eine Verdopplung der Reichweite bei einer um nur 35% höheren Leistungsaufnahme gegenüber einem herkömmlichen Kommunikationsverfahren (SISO). / The present work is dedicated to the investigation and enhancement of amplitude and phase control methods and circuits. The aim is to enhance
the performance of these circuits in modern radio frequency transceivers with a comparable or even lower effort and power consumption. A prove
of concept will be delivered with implementation examples.
By means of models of the passive attenuator topologies , T, bridged-T and X, a thorough analysis is performed in order to compare them regarding
their impact on the signal phase. Additionally, a novel approach to increase the control linearity of the attenuators is proposed and verified
by measurements, showing a phase error of 3 ° and a control linearity error of 0,35 dB at the 1 dB corner frequency, successfully.
The work also presents an investigation on variable gain amplifiers and reveals the superior performance of the Gilbert cell with respect to low
phase variations. A cascode biasing circuit that supports these properties is proposed. Measurements prove this concept with relative phase errors
of 0,4 ° over a wide attenuation control range of 36 dB thus cutting the error by half in a four times wider control range.
The circulator based phase shifting approach is chosen and improved significantly by means of tuning the transconductor instead of the varactors
thus removing their impact on signal amplitude. The approach is supported by measurements yielding an amplitude error of only 0,9 dB
within a phase control range of 360 ° which corresponds to an improvement by a factor of three compared to recent circulator phase shifters.
Finally, the design of several vector modulator topologies is shown with hardware examples of single chips, hybrid printed circuit boards
and highly integrated system level ICs demonstrating a full receiver. By using improved variable gain amplifiers, an effective vector modulator
resolution of 6 bit without calibration is achieved. Furthermore, a multiple-input multiple-output system is demonstrated that doubles the
coverage range of common SISO systems with only 35% of additional power consumption.
|
5 |
A 64 Channel Transmit System for Single Echo Acquisition MRIFeng, Ke 2011 August 1900 (has links)
Magnetic Resonance Imaging (MRI) is considered as a slow imaging technique. Various approaches to accelerate MRI imaging have been explored by researchers in the past decades. Earlier gradient based methods have reached the safety limit. Parallel receiving techniques achieve accelerations by reducing phase encoding steps. Among these methods, SEA Imaging achieved the highest possible acceleration by completely eliminating phase encoding. However, SEA imaging is limited to thin planar slices above the array due to the correction needed for the inherent phase cancellation caused by voxel-sized coils. A phase compensation gradient pulse is used for this correction in SEA imaging. This phase compensation is dependent on slice position and thickness as well as the orientation of the array elements, placing stringent restrictions on SEA imaging, limiting its applications. Converting the SEA system into Transmit / Receive (T/R) mode, which is the main purpose of this study, eliminates the requirement for phase compensation gradient because phase departed during transmit is refocused during receiving. Independent amplitude and phase control of RF pulse for each coil of a SEA array is achieved using a low cost scalable parallel transmit system design. The first 64-channel parallel transmitter for MRI in the world is constructed and tested. Software is also developed to control the phase and amplitude of all the 64 channels of RF excitation pulses independently through National Instruments DAQ system. The system consists of vector modulators controlled by digital controlled potentiometers, two-stage amplifiers and T/R switches on the transmit side. All these are combined with newly designed and constructed preamplifiers and the existing 64-channel parallel receivers on the receive side, leading to the only 64-channel parallel T/R system available for MRI. As a bonus, the system can be easily updated to full Transmit SENSE capability. Furthermore, simulations and images are done to synthesize transmit patterns thanks to the large channel count. Testing results show that the system is capable of 100W per channel simultaneous transmission. Using this system, transmit field can be synthesized by varying the phase and amplitude across channel without traditionally required complicated pulse sequences involving simultaneous RF and gradient fields. Curved slice excitation has conventionally been considered a difficult task for MRI, achievable only through complicated pulses sequences. Using this system and flexible array wrapped around the subject to be imaged, the system is able to excite curved slice using one shot. TR images indicate that the system is capable of high speed surface imaging at 200 frames per second following the surface of a flexible SEA array coil which has not been achieved using other methods in MRI.
|
6 |
Oscillateur de puissance en ondes millimétriquesDréan, Sophie 19 December 2012 (has links)
Ce travail porte sur l'étude d'un oscillateur de puissance contrôlé en tension en ondes millimétriques. L'objectif de la thèse est de concevoir cet oscillateur pour la bande de fréquence utilisée dans les standards IEEE 802.15.3c, IEEE 802.11ad et ECMA TC48, à savoir 56GHz-65GHz. Le principe de l'oscillateur de puissance est développé autour d'un amplificateur de puissance rebouclé pour engendrer un système oscillant. L'amplificateur de puissance développé est un amplicateur à deux étages. Celui de puissance est de classe E et le driver est de classe F. La boucle de retour est basée sur un vecteur-modulateur. Les circuits ont été fabriqués en technologie CMOS 65nm de STMicroelectronics. / This PhD thesis deals with a Power Voltage Controlled Oscillator (VCO) in millimeter waves. The aim is to design this Power VCO in the frequency band used in the standards IEEE 802.15.3c, IEEE 802.11ad and ECMA TC48, meaning from 56GHz to 65GHz. The principle of this oscillator is developed around a power amplifier in a loop, generating an oscillating system. The power amplifier is developed in a two-stage topology. The power stage is composed with a 60GHz class E cascoded amplifier and the driver stage is composed of a 60GHz class F amplifier. The feedback of the loop is based on a vector-modulator. The circuits have been realised in 65nm CMOS technology from STMicroelectronics.
|
7 |
Hochfrequenzschaltungen zur Einstellung von Amplitude und PhaseMayer, Uwe 28 February 2012 (has links)
Die vorliegende Arbeit ist der analytischen Untersuchung und Weiterentwicklung von Methoden und Schaltungen zur Einstellung der Signalphase und -amplitude gewidmet. Hierbei wird zum Ziel gesetzt, die Leistungsfähigkeit dieser Schaltungen als analoge Hochfrequenz-Baugruppen in Empfangs- und Sendeschaltkreisen mit einem vergleichbaren oder geringerem schaltungstechnischen Aufwand und Strombedarf zu verbessern und dies anhand von Implementierungsbeispielen zu bestätigen.
Die Dämpfungsglied-Topologien , T, überbrücktes T und X werden modelliert und hinsichtlich der Phasenbeeinflussung analysiert, sodass eine Bewertung ihrer Eignung durchgeführt werden kann. Weiterhin wird ein innovativer Ansatz zur Linearisierung der Steuerkennlinie vorgestellt und mit Hilfe einer Beispielschaltung mit einem Phasenfehler von 3 ° und einem Steuerlinearitätsfehler von 0,35 dB innerhalb der 1 dB Grenzfrequenz und einem Steuerbereich von 20 dB nachgewiesen.
Die Arbeit bietet darüber hinaus eine analytische Betrachtung zu aktiven steuerbaren Verstärkern, welche die besondere Eignung der Gilbert-Zelle aufzeigt und eine geeignete Ansteuerschaltung ableitet. Am Beispiel nach diesem Prinzip entworfener Schaltkreise werden Phasenfehler von nur 0,4 ° innerhalb eines besonders hohen Stellbereichs von 36 dB demonstriert, wodurch eine Vergrößerung des Stellbereichs um den Faktor 4 und eine Verbesserung des Phasenfehlers um den Faktor 2 im Vergleich zum Stand der Technik erreicht wurde.
Es wird der Zirkulator-Phasenschieber maßgeblich durch eine neuartige geeignete Ansteuerung verbessert. Damit werden die sonst für die
Amplitudenbeeinflussung im Wesentlichen verantwortlichen Varaktoren überflüssig, ohne dabei den schaltungstechnischen Aufwand zu erhöhen. Eine Messung der entsprechenden Schaltung bestätigt dies mit einem Amplitudenfehler von nur 0,9 dB für einen Phasenstellbereich von 360 °, was einer Verringerung des Fehlers um den Faktor 3 im Vergleich zu herkömmlichen Zirkulator-Phasenschiebern entspricht.
Abschließend wird der Funktionsnachweis mehrerer entworfener Vektor-Modulatoren mit einer effektiven Genauigkeit von bis zu 6 bit in Einzelschaltungen, Hybridaufbauten und schließlich im Rahmen eines vollständig integrierten Empfängerschaltkreises erbracht. Dieser erzielt eine Verdopplung der Reichweite bei einer um nur 35% höheren Leistungsaufnahme gegenüber einem herkömmlichen Kommunikationsverfahren (SISO). / The present work is dedicated to the investigation and enhancement of amplitude and phase control methods and circuits. The aim is to enhance
the performance of these circuits in modern radio frequency transceivers with a comparable or even lower effort and power consumption. A prove
of concept will be delivered with implementation examples.
By means of models of the passive attenuator topologies , T, bridged-T and X, a thorough analysis is performed in order to compare them regarding
their impact on the signal phase. Additionally, a novel approach to increase the control linearity of the attenuators is proposed and verified
by measurements, showing a phase error of 3 ° and a control linearity error of 0,35 dB at the 1 dB corner frequency, successfully.
The work also presents an investigation on variable gain amplifiers and reveals the superior performance of the Gilbert cell with respect to low
phase variations. A cascode biasing circuit that supports these properties is proposed. Measurements prove this concept with relative phase errors
of 0,4 ° over a wide attenuation control range of 36 dB thus cutting the error by half in a four times wider control range.
The circulator based phase shifting approach is chosen and improved significantly by means of tuning the transconductor instead of the varactors
thus removing their impact on signal amplitude. The approach is supported by measurements yielding an amplitude error of only 0,9 dB
within a phase control range of 360 ° which corresponds to an improvement by a factor of three compared to recent circulator phase shifters.
Finally, the design of several vector modulator topologies is shown with hardware examples of single chips, hybrid printed circuit boards
and highly integrated system level ICs demonstrating a full receiver. By using improved variable gain amplifiers, an effective vector modulator
resolution of 6 bit without calibration is achieved. Furthermore, a multiple-input multiple-output system is demonstrated that doubles the
coverage range of common SISO systems with only 35% of additional power consumption.
|
Page generated in 0.079 seconds