Spelling suggestions: "subject:"vehicle five"" "subject:"vehicle fine""
1 |
Design fires in underground hard rock minesHansen, Rickard January 2011 (has links)
During several decades considerable research activities have been conducted with respect to fires in coal mines, but the research activities with respect to hard rock mines have been limited. As the hard rock mines are getting more complex the need for deeper understanding of fires in underground hard rock mines are getting more in demand. The more urgent demands are the need for more specific heat release rate curves as design fires, applicable fire experiments and any method that would allow for the calculation of the total heat release rate curve of an object. This thesis presents a number of examples on design fire curves applicable to underground hard rock mines; it also presents the results of model scale fire experiments and methods for calculating the total heat release rate of several objects at uniform as well as non-uniform conditions. Tests were carried out in a model scale tunnel using wooden pallets as fire load. The parameters tested were the distance between piles of pallets and longitudinal ventilation rate. It was found that an increasing ventilation rate also increases the peak heat release rate. When studying the curves of heat release rates it was found that when the distance between the ignited pile and the second pile increased to a certain level the delayed ignition of the second pile will result in that the peak heat release rate of the adjacent piles will not occur simultaneously. The ignition data indicated that the ignition time of adjacent piles decreased as the longitudinal ventilation increased. A method using a critical heat flux as ignition criterion exhibited very good agreement with the corresponding experiments for both uniform as well as non-uniform conditions. The methods using the ignition temperature as ignition criterion did not agree very well with any of the corresponding experiments. / GRUVAN
|
Page generated in 0.0462 seconds