• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Wind induced natural ventilation for wind tower houses in maritime desert climates with special reference to Bahrain

Farija, Ghassan Mahmood January 1997 (has links)
No description available.
2

The Finite Element Analusis of Ventilative Motorcycle Helmets

Shen, Jhuo-ying 08 August 2008 (has links)
In Taiwan, a motorcycle is the most important and general transportation. It is no denying that wearing a motorcycle helmet could prevent the rider from head injuries in the accidents. However, the ventilation of helmets still has to be improved. This study aims to set several ventilation channels in the energy absorption liner. They apply the Venturi effect to increase the ventilation of helmets. But it may affect the protection performance of helmet. The purpose of this study is to estimate the protective ability of the ventilative helmet. Therefore, the various ventilative helmets are designed by the computer-aided design software SolidWorks, and simulations of the impact test of the helmet are investigated by the finite element analysis software ANSYS/LS-DYNA. In addition, the effect of using different foam material is also discussed in this study.
3

Experimental study of single sided ventilation through a multi-configuration slotted louvre system

O'Sullivan, Paul D. January 2018 (has links)
Evidence based performance of novel ventilation systems in existing low energy buildings is invaluable as it provides data on the system operation in a real dynamic environment. This thesis presents the outcomes from research involving a number of experimental field studies of a single sided ventilation system installed in a single cell office space as part of a building retrofit pilot project in Cork, Ireland. The solution consists of a purpose provided, multi configuration opening, comprising a narrow slotted architectural louvre component split across a low level manual opening section and a high level automated opening section. A review of published research found that little experimental data exists on the performance of such systems and air flow rate correlations developed for plain openings are currently used by designers to make predictions about their performance. Three experimental campaigns were designed and carried out. First, in order to quantify performance of the system, long term and short term monitoring of the internal thermal and air flow environment at the experimental building was completed. Second, ventilation rate measurements in existing and retrofit spaces were completed using a tracer gas concentration decay technique. Thirdly, air flow through the single sided slot louvre opening was investigated. In addition, the annual cooling potential of the multi-configuration system was investigated computationally. Results show there was a significant difference between both thermal environments with the retrofit space consistently displaying lower air temperatures over the cooling season and throughout all Air Change Rate measurement periods. Lower levels of vertical thermal stratification and diurnal temperature variation were also observed. On average, across a wide range of boundary conditions, lower ventilation rates were observed for the slotted louvre system with a narrower spread of values when compared with the existing building. The dominant driving force was either buoyancy or wind depending on the opening configuration adopted in the slotted louvre system. The slot louvre was found to be wind dominant for lower opening heights when compared with a plain opening of the same dimensions. Existing single sided correlations were found to perform better when predicting airflow rates through a plain opening when compared with the slot louvre system and a new dimensionless exchange rate parameter is proposed for predicting wind driven airflow through the slot louvre. Simulations indicate that 80% of annual occupied hours required an enhanced ventilative cooling airflow rate to achieve internal thermal comfort. Using a combination of configurations the system was able to provide the required cooling airflow rate for 93% of the occupied hours.

Page generated in 0.0792 seconds