Spelling suggestions: "subject:"verhaltensmodellen"" "subject:"verhaltensmodelle""
1 |
Automatisches Modellieren von Agenten-VerhaltenWendler, Jan 26 August 2003 (has links)
In Multi-Agenten-Systemen (MAS) kooperieren und konkurrieren Agenten um ihre jeweiligen Ziele zu erreichen. Für optimierte Agenten-Interaktionen sind Kenntnisse über die aktuellen und zukünftigen Handlungen anderer Agenten (Interaktionsparter, IP) hilfreich. Bei der Ermittlung und Nutzung solcher Kenntnisse kommt dem automatischen Erkennen und Verstehen sowie der Vorhersage von Verhalten der IP auf Basis von Beobachtungen besondere Bedeutung zu. Die Dissertation beschäftigt sich mit der automatischen Bestimmung und Vorhersage von Verhalten der IP durch einen Modellierenden Agenten (MA). Der MA generiert fallbasierte, adaptive Verhaltens-Modelle seiner IP und verwendet diese zur Vorhersage ihrer Verhalten. Als Anwendungsszenario wird mit dem virtuellen Fußballspiel des RoboCup ein komplexes und populäres MAS betrachtet. Der Hauptbeitrag dieser Arbeit besteht in der Ausarbeitung, Realisierung und Evaluierung eines Ansatzes zur automatischen Verhaltens-Modellierung für ein komplexes Multi-Agenten-System. / In multi-agent-systems agents cooperate and compete to reach their personal goals. For optimized agent interactions it is helpful for an agent to have knowledge about the current and future behavior of other agents. Ideally the recognition and prediction of behavior should be done automatically. This work addresses a way of automatically classifying and an attempt at predicting the behavior of a team of agents, based on external observation only. A set of conditions is used to distinguish behaviors and to partition the resulting behavior space. From observed behavior, team specific behavior models are then generated using Case Based Reasoning. These models, which are derived from a number of virtual soccer games (RoboCup), are used to predict the behavior of a team during a new game. The main contribution of this work is the design, realization and evaluation of an automatic behavior modeling approach for complex multi-agent systems.
|
2 |
Timeout Reached, Session Ends? / A Methodological Framework for Evaluating the Impact of Different Session-Identification ApproachesDietz, Florian 14 December 2022 (has links)
Die Identifikation von Sessions zum Verständnis des Benutzerverhaltens ist ein Forschungsgebiet des Web Usage Mining. Definitionen und Konzepte werden seit über 20 Jahren diskutiert. Die Forschung zeigt, dass Session-Identifizierung kein willkürlicher Prozess sein sollte. Es gibt eine fragwürdige Tendenz zu vereinfachten mechanischen Sessions anstelle logischer Segmentierungen. Ziel der Dissertation ist es zu beweisen, wie unterschiedliche Session-Ansätze zu abweichenden Ergebnissen und Interpretationen führen. Die übergreifende Forschungsfrage lautet: Werden sich verschiedene Ansätze zur Session-Identifizierung auf Analyseergebnisse und Machine-Learning-Probleme auswirken? Ein methodischer Rahmen für die Durchführung, den Vergleich und die Evaluation von Sessions wird gegeben. Die Dissertation implementiert 135 Session-Ansätze in einem Jahr (2018) Daten einer deutschen Preisvergleichs-E-Commerce-Plattform. Die Umsetzung umfasst mechanische Konzepte, logische Konstrukte und die Kombination mehrerer Mechaniken. Es wird gezeigt, wie logische Sessions durch Embedding-Algorithmen aus Benutzersequenzen konstruiert werden: mit einem neuartigen Ansatz zur Identifizierung logischer Sessions, bei dem die thematische Nähe von Interaktionen anstelle von Suchanfragen allein verwendet wird. Alle Ansätze werden verglichen und quantitativ beschrieben sowie in drei Machine-Learning-Problemen (wie Recommendation) angewendet. Der Hauptbeitrag dieser Dissertation besteht darin, einen umfassenden Vergleich von Session-Identifikationsalgorithmen bereitzustellen. Die Arbeit bietet eine Methodik zum Implementieren, Analysieren und Evaluieren einer Auswahl von Mechaniken, die es ermöglichen, das Benutzerverhalten und die Auswirkungen von Session-Modellierung besser zu verstehen. Die Ergebnisse zeigen, dass unterschiedlich strukturierte Eingabedaten die Ergebnisse von Algorithmen oder Analysen drastisch verändern können. / The identification of sessions as a means of understanding user behaviour is a common research area of web usage mining. Different definitions and concepts have been discussed for over 20 years: Research shows that session identification is not an arbitrary task. There is a tendency towards simplistic mechanical sessions instead of more complex logical segmentations, which is questionable. This dissertation aims to prove how the nature of differing session-identification approaches leads to diverging results and interpretations. The overarching research question asks: will different session-identification approaches impact analysis and machine learning tasks? A comprehensive methodological framework for implementing, comparing and evaluating sessions is given. The dissertation provides implementation guidelines for 135 session-identification approaches utilizing a complete year (2018) of traffic data from a German price-comparison e-commerce platform. The implementation includes mechanical concepts, logical constructs and the combination of multiple methods. It shows how logical sessions were constructed from user sequences by employing embedding algorithms on interaction logs; taking a novel approach to logical session identification by utilizing topical proximity of interactions instead of search queries alone. All approaches are compared and quantitatively described. The application in three machine-learning tasks (such as recommendation) is intended to show that using different sessions as input data has a marked impact on the outcome. The main contribution of this dissertation is to provide a comprehensive comparison of session-identification algorithms. The research provides a methodology to implement, analyse and compare a wide variety of mechanics, allowing to better understand user behaviour and the effects of session modelling. The main results show that differently structured input data may drastically change the results of algorithms or analysis.
|
Page generated in 0.0894 seconds