• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Numerical Analysis of Non-Fickian Diffusion with a General Source

Tiwari, Ganesh 01 May 2013 (has links)
The inadequacy of Fick’s law to incorporate causality can be overcome by replacing it with the Green–Naghdi type II (GNII) flux relation. Combining the GNII assumption and conservation of mass leads to [see document for equation] where r (x, t) is the density function, S(p) is a source term and c¥ is a positive constant which carries (SI) units of m/sec. A general source term given by [see document for equation] is proposed. Here, the constants y and ps are the rate coefficient and saturation density respectively. The travelling wave solutions and numerical analysis of four special cases of equation (2), namely: Pearl-Verhulst Growth law, Zel’dovich Law, Newmann Law and Stefan- Boltzmann Law are investigated. For both analysis, results are compared with the available literature and extended for other cases. The numerical analysis is carried out by imposing well-studied Initial Boundary Value Problem and implementing a built-in method in the software package Mathematica 9. For Pearl-Verhulst source type, the results are compared to those found in literature [1]. Confirming the validity of built-in method for Pearl-Verhulst law, the generic built-in method is extended to study the transient signal response for similar initial boundary value problems when the source terms are Zel’dovich law, Newmann law and Stefan-Boltzmann law.
2

Анализ стохастических аттракторов модели Ферхюльста с запаздыванием : магистерская диссертация / Analysis of stochastic attractors of Verhulst model with delay

Екатеринчук, Е. Д., Ekaterinchuk, E. D. January 2015 (has links)
We investigate attractors of the Verhulst model with delay under the influence of random perturbations. In this work, we study dynamic regimes and bifurcations for the deterministic discrete model in zones of stable equilibria, closed invariant curves and discrete cycles. Here, a stability level of attractors is studied by Lyapunov exponents. Transformations of the closed invariant curve that appears as a result of Neimark-Sacker bifurcation, were analyzed via the rotation number and angular density. A parametric analysis of stochastically forced regular attractors of this model is performed using the stochastic sensitivity functions technique. A spatial arrangement of random states in stochastic attractors is described by confidence domains. The phenomenon of noise-induced transitions in a zone of discrete cycles is discussed. / Мы исследуем аттракторы модели Ферхюльста с запаздыванием под влиянием случайных возмущений. В работе мы изучаем динамические режимы и бифуркации для детерминированной дискретной модели в зонах устойчивых равновесий, замкнутых инвариантных кривых и дискретных циклов. Исследована устойчивость регулярных аттракторов. Замкнутая инвариантная кривая, которая появляется в результате бифуркации Неймарка–Сакера, анализируется с помощью числа вращения и секторной плотности. Параметрический анализ стохастически возмущенных регулярных аттракторов этой модели выполняется с помощью техники функции стохастической чувствительности. Пространственное распределение случайных состояний стохастических аттракторов описывается с помощью доверительных областей. Наблюдается явление индуцированных шумом переходов в зоне дискретных циклов.
3

Klassiska populationsmodeller kontra stokastiska : En simuleringsstudie ur matematiskt och datalogiskt perspektiv

Nilsson, Mattias, Jönsson, Ingela January 2008 (has links)
I detta tvärvetenskapliga arbete studeras från den matematiska sidan tre klassiska populationsmodeller: Malthus tillväxtmodell, Verhulsts logistiska modell och Lotka-Volterras jägarebytesmodell. De klassiska modellerna jämförs med stokastiska. De stokastiska modeller som studeras är födelsedödsprocesser och deras diffusionsapproximation. Jämförelse görs med medelvärdesbildade simuleringar. Det krävs många simuleringar för att kunna genomföra jämförelserna. Dessa simuleringar måste utföras i datormiljö och det är här den datalogiska aspekten av arbetet kommer in. Modellerna och deras resultathantering har implementerats i både MatLab och i C, för att kunna möjliggöra en undersökning om skillnaderna i tidsåtgången mellan de båda språken, under genomförandet av ovan nämnda jämförelser. Försök till tidsoptimering utförs och även användarvänligheten under implementeringen av de matematiska problemen i de båda språken behandlas. Följande matematiska slutsatser har dragits, att de medelvärdesbildade lösningarna inte alltid sammanfaller med de klassiska modellerna när de simuleras på stora tidsintervall. I den logistiska modellen samt i Lotka-Volterras modell dör förr eller senare de stokastiska simuleringarna ut när tiden går mot oändligheten, medan deras deterministiska representation lever vidare. I den exponentiella modellen sammanfaller medelvärdet av de stokastiska simuleringarna med den deterministiska lösningen, dock blir spridningen stor för de stokastiska simuleringarna när de utförs på stora tidsintervall. Datalogiska slutsatser som har dragits är att när det kommer till att implementera få modeller, samt resultatbearbetning av dessa, som ska användas upprepade gånger, är C det bäst lämpade språket då det visat sig vara betydligt snabbare under exekvering än vad MatLab är. Dock måste hänsyn tas till alla de svårigheter som implementeringen i C drar med sig. Dessa svårigheter kan till stor del undvikas om implementeringen istället sker i MatLab, då det därmed finns tillgång till en uppsjö av väl lämpade funktioner och färdiga matematiska lösningar. / In this interdisciplinary study, three classic population models will be studied from a mathematical view: Malthus’ growth, Verhulst’s logistic model and Lotka-Volterra’s model for hunter and prey. The classic models are being compared to the stochastic ones. The stochastic models studied are the birthdeath processes and their diffusion approximation. Comparisons are made by averaging simulations. It requires numerous simulations to carry out the comparisons. The simulations must be carried out on a computer and this is where the computer science emerges to the project. The models, along with the handling of the results, have been implemented in both MatLab and in C in order to allow a comparison between the two languages whilst executing the above mentioned study. Attempts to time optimization and an evaluation concerning the user-friendliness regarding the implementation of mathematical problems will be performed. Mathematic conclusions, which have been drawn, are that the averaging solutions do not always coincide with the traditional models when they are being simulated over large time. In the logistic model and in Lotka-Volterra’s model the stochastic simulations will sooner or later die when the time is moving towards infinity, whilst their deterministic representation keeps on living. In the exponential model, the mean values of the stochastic simulations and of the deterministic solution coincide. There is, however, a large spread for the stochastic simulations when they are carried out over a large time. Computer scientific conclusions drawn from the study includes that when it comes to implementing a few models, along with the handling of the results, to be used repeatedly, C is the most appropriate language as it proved to be significantly faster during execution. However, all of the difficulties during the implementation of mathematical problems in C must be kept in mind. These difficulties can be avoided if the implementation instead takes place in MatLab, where a numerous of mathematical functions and solutions will be available.
4

Klassiska populationsmodeller kontra stokastiska : En simuleringsstudie ur matematiskt och datalogiskt perspektiv

Jönsson, Ingela, Nilsson, Mattias January 2008 (has links)
<p>I detta tvärvetenskapliga arbete studeras från den matematiska sidan tre klassiska populationsmodeller: Malthus tillväxtmodell, Verhulsts logistiska modell och Lotka-Volterras jägarebytesmodell. De klassiska modellerna jämförs med stokastiska. De stokastiska modeller som studeras är födelsedödsprocesser och deras diffusionsapproximation. Jämförelse görs med medelvärdesbildade simuleringar.</p><p>Det krävs många simuleringar för att kunna genomföra jämförelserna. Dessa simuleringar måste utföras i datormiljö och det är här den datalogiska aspekten av arbetet kommer in. Modellerna och deras resultathantering har implementerats i både MatLab och i C, för att kunna möjliggöra en undersökning om skillnaderna i tidsåtgången mellan de båda språken, under genomförandet av ovan nämnda jämförelser. Försök till tidsoptimering utförs och även användarvänligheten under implementeringen av de matematiska problemen i de båda språken behandlas.</p><p>Följande matematiska slutsatser har dragits, att de medelvärdesbildade lösningarna inte alltid sammanfaller med de klassiska modellerna när de simuleras på stora tidsintervall. I den logistiska modellen samt i Lotka-Volterras modell dör förr eller senare de stokastiska simuleringarna ut när tiden går mot oändligheten, medan deras deterministiska representation lever vidare. I den exponentiella modellen sammanfaller medelvärdet av de stokastiska simuleringarna med den deterministiska lösningen, dock blir spridningen stor för de stokastiska simuleringarna när de utförs på stora tidsintervall.</p><p>Datalogiska slutsatser som har dragits är att när det kommer till att implementera få modeller, samt resultatbearbetning av dessa, som ska användas upprepade gånger, är C det bäst lämpade språket då det visat sig vara betydligt snabbare under exekvering än vad MatLab är. Dock måste hänsyn tas till alla de svårigheter som implementeringen i C drar med sig. Dessa svårigheter kan till stor del undvikas om implementeringen istället sker i MatLab, då det därmed finns tillgång till en uppsjö av väl lämpade funktioner och färdiga matematiska lösningar.</p> / <p>In this interdisciplinary study, three classic population models will be studied from a mathematical view: Malthus’ growth, Verhulst’s logistic model and Lotka-Volterra’s model for hunter and prey. The classic models are being compared to the stochastic ones. The stochastic models studied are the birthdeath processes and their diffusion approximation. Comparisons are made by averaging simulations.</p><p>It requires numerous simulations to carry out the comparisons. The simulations must be carried out on a computer and this is where the computer science emerges to the project. The models, along with the handling of the results, have been implemented in both Mat- Lab and in C in order to allow a comparison between the two languages whilst executing the above mentioned study. Attempts to time optimization and an evaluation concerning the user-friendliness regarding the implementation of mathematical problems will be performed.</p><p>Mathematic conclusions, which have been drawn, are that the averaging solutions do not always coincide with the traditional models when they are being simulated over large time. In the logistic model and in Lotka-Volterra’s model the stochastic simulations will sooner or later die when the time is moving towards infinity, whilst their deterministic representation keeps on living. In the exponential model, the mean values of the stochastic simulations and of the deterministic solution coincide. There is, however, a large spread for the stochastic simulations when they are carried out over a large time.</p><p>Computer scientific conclusions drawn from the study includes that when it comes to implementing a few models, along with the handling of the results, to be used repeatedly, C is the most appropriate language as it proved to be significantly faster during execution. However, all of the difficulties during the implementation of mathematical problems in C must be kept in mind. These difficulties can be avoided if the implementation instead takes place in MatLab, where a numerous of mathematical functions and solutions will be available.</p>
5

Klassiska populationsmodeller kontra stokastiska : En simuleringsstudie ur matematiskt och datalogiskt perspektiv

Nilsson, Mattias, Jönsson, Ingela January 2008 (has links)
<p>I detta tvärvetenskapliga arbete studeras från den matematiska sidan tre klassiska populationsmodeller: Malthus tillväxtmodell, Verhulsts logistiska modell och Lotka-Volterras jägarebytesmodell. De klassiska modellerna jämförs med stokastiska. De stokastiska modeller som studeras är födelsedödsprocesser och deras diffusionsapproximation. Jämförelse görs med medelvärdesbildade simuleringar.</p><p>Det krävs många simuleringar för att kunna genomföra jämförelserna. Dessa simuleringar måste utföras i datormiljö och det är här den datalogiska aspekten av arbetet kommer in. Modellerna och deras resultathantering har implementerats i både MatLab och i C, för att kunna möjliggöra en undersökning om skillnaderna i tidsåtgången mellan de båda språken, under genomförandet av ovan nämnda jämförelser. Försök till tidsoptimering utförs och även användarvänligheten under implementeringen av de matematiska problemen i de båda språken behandlas.</p><p>Följande matematiska slutsatser har dragits, att de medelvärdesbildade lösningarna inte alltid sammanfaller med de klassiska modellerna när de simuleras på stora tidsintervall. I den logistiska modellen samt i Lotka-Volterras modell dör förr eller senare de stokastiska simuleringarna ut när tiden går mot oändligheten, medan deras deterministiska representation lever vidare. I den exponentiella modellen sammanfaller medelvärdet av de stokastiska simuleringarna med den deterministiska lösningen, dock blir spridningen stor för de stokastiska simuleringarna när de utförs på stora tidsintervall.</p><p>Datalogiska slutsatser som har dragits är att när det kommer till att implementera få modeller, samt resultatbearbetning av dessa, som ska användas upprepade gånger, är C det bäst lämpade språket då det visat sig vara betydligt snabbare under exekvering än vad MatLab är. Dock måste hänsyn tas till alla de svårigheter som implementeringen i C drar med sig. Dessa svårigheter kan till stor del undvikas om implementeringen istället sker i MatLab, då det därmed finns tillgång till en uppsjö av väl lämpade funktioner och färdiga matematiska lösningar.</p> / <p>In this interdisciplinary study, three classic population models will be studied from a mathematical view: Malthus’ growth, Verhulst’s logistic model and Lotka-Volterra’s model for hunter and prey. The classic models are being compared to the stochastic ones. The stochastic models studied are the birthdeath processes and their diffusion approximation. Comparisons are made by averaging simulations.</p><p>It requires numerous simulations to carry out the comparisons. The simulations must be carried out on a computer and this is where the computer science emerges to the project. The models, along with the handling of the results, have been implemented in both MatLab and in C in order to allow a comparison between the two languages whilst executing the above mentioned study. Attempts to time optimization and an evaluation concerning the user-friendliness regarding the implementation of mathematical problems will be performed.</p><p>Mathematic conclusions, which have been drawn, are that the averaging solutions do not always coincide with the traditional models when they are being simulated over large time. In the logistic model and in Lotka-Volterra’s model the stochastic simulations will sooner or later die when the time is moving towards infinity, whilst their deterministic representation keeps on living. In the exponential model, the mean values of the stochastic simulations and of the deterministic solution coincide. There is, however, a large spread for the stochastic simulations when they are carried out over a large time.</p><p>Computer scientific conclusions drawn from the study includes that when it comes to implementing a few models, along with the handling of the results, to be used repeatedly, C is the most appropriate language as it proved to be significantly faster during execution. However, all of the difficulties during the implementation of mathematical problems in C must be kept in mind. These difficulties can be avoided if the implementation instead takes place in MatLab, where a numerous of mathematical functions and solutions will be available.</p>
6

Klassiska populationsmodeller kontra stokastiska : En simuleringsstudie ur matematiskt och datalogiskt perspektiv

Jönsson, Ingela, Nilsson, Mattias January 2008 (has links)
I detta tvärvetenskapliga arbete studeras från den matematiska sidan tre klassiska populationsmodeller: Malthus tillväxtmodell, Verhulsts logistiska modell och Lotka-Volterras jägarebytesmodell. De klassiska modellerna jämförs med stokastiska. De stokastiska modeller som studeras är födelsedödsprocesser och deras diffusionsapproximation. Jämförelse görs med medelvärdesbildade simuleringar. Det krävs många simuleringar för att kunna genomföra jämförelserna. Dessa simuleringar måste utföras i datormiljö och det är här den datalogiska aspekten av arbetet kommer in. Modellerna och deras resultathantering har implementerats i både MatLab och i C, för att kunna möjliggöra en undersökning om skillnaderna i tidsåtgången mellan de båda språken, under genomförandet av ovan nämnda jämförelser. Försök till tidsoptimering utförs och även användarvänligheten under implementeringen av de matematiska problemen i de båda språken behandlas. Följande matematiska slutsatser har dragits, att de medelvärdesbildade lösningarna inte alltid sammanfaller med de klassiska modellerna när de simuleras på stora tidsintervall. I den logistiska modellen samt i Lotka-Volterras modell dör förr eller senare de stokastiska simuleringarna ut när tiden går mot oändligheten, medan deras deterministiska representation lever vidare. I den exponentiella modellen sammanfaller medelvärdet av de stokastiska simuleringarna med den deterministiska lösningen, dock blir spridningen stor för de stokastiska simuleringarna när de utförs på stora tidsintervall. Datalogiska slutsatser som har dragits är att när det kommer till att implementera få modeller, samt resultatbearbetning av dessa, som ska användas upprepade gånger, är C det bäst lämpade språket då det visat sig vara betydligt snabbare under exekvering än vad MatLab är. Dock måste hänsyn tas till alla de svårigheter som implementeringen i C drar med sig. Dessa svårigheter kan till stor del undvikas om implementeringen istället sker i MatLab, då det därmed finns tillgång till en uppsjö av väl lämpade funktioner och färdiga matematiska lösningar. / In this interdisciplinary study, three classic population models will be studied from a mathematical view: Malthus’ growth, Verhulst’s logistic model and Lotka-Volterra’s model for hunter and prey. The classic models are being compared to the stochastic ones. The stochastic models studied are the birthdeath processes and their diffusion approximation. Comparisons are made by averaging simulations. It requires numerous simulations to carry out the comparisons. The simulations must be carried out on a computer and this is where the computer science emerges to the project. The models, along with the handling of the results, have been implemented in both Mat- Lab and in C in order to allow a comparison between the two languages whilst executing the above mentioned study. Attempts to time optimization and an evaluation concerning the user-friendliness regarding the implementation of mathematical problems will be performed. Mathematic conclusions, which have been drawn, are that the averaging solutions do not always coincide with the traditional models when they are being simulated over large time. In the logistic model and in Lotka-Volterra’s model the stochastic simulations will sooner or later die when the time is moving towards infinity, whilst their deterministic representation keeps on living. In the exponential model, the mean values of the stochastic simulations and of the deterministic solution coincide. There is, however, a large spread for the stochastic simulations when they are carried out over a large time. Computer scientific conclusions drawn from the study includes that when it comes to implementing a few models, along with the handling of the results, to be used repeatedly, C is the most appropriate language as it proved to be significantly faster during execution. However, all of the difficulties during the implementation of mathematical problems in C must be kept in mind. These difficulties can be avoided if the implementation instead takes place in MatLab, where a numerous of mathematical functions and solutions will be available.

Page generated in 0.062 seconds