1 |
Vertical Data Structures and Computation of Sliding Window Averages in Two-Dimensional DataHelsene, Adam Paul January 2020 (has links)
A vertical-style data structure and operations on data in that structure are explored and tested in the domain of sliding window average algorithms for geographical information systems (GIS) data. The approach allows working with data of arbitrary precision, which is centrally important for very large GIS data sets.
The novel data structure can be constructed from existing multi-channel image data, and data in the structure can be converted back to image data. While in the new structure, operations such as addition, division, and bit-level shifting can be performed in a parallelized manner. It is shown that the computation of averages for sliding windows on this data structure can be performed faster than using traditional computation techniques, and the approach scales to larger sliding window sizes.
|
2 |
Uma An?lise Comparativa entre Sistemas de Combina??o de Classificadores com Distribui??o Vertical dos DadosSantana, Laura Emmanuella Alves dos Santos 01 February 2008 (has links)
Made available in DSpace on 2014-12-17T15:47:44Z (GMT). No. of bitstreams: 1
LauraEASS.pdf: 1648653 bytes, checksum: 0aa1d6a5cd26175688d09f2c09459503 (MD5)
Previous issue date: 2008-02-01 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / In systems that combine the outputs of classification methods (combination systems), such as ensembles and multi-agent systems, one of the main constraints is that the base
components (classifiers or agents) should be diverse among themselves. In other words, there is clearly no accuracy gain in a system that is composed of a set of identical base
components. One way of increasing diversity is through the use of feature selection or data distribution methods in combination systems. In this work, an investigation of the impact of using data distribution methods among the components of combination systems will be performed. In this investigation, different methods of data distribution will be used and an analysis of the combination systems, using several different configurations, will be performed. As a result of this analysis, it is aimed to detect which combination systems are more suitable to use feature distribution among the components / Em sistemas que combinam as sa?das de classificadores de padr?es, sistemas de combina??o, como comit?s e sistemas multiagentes para classifica??o, um dos principais
problemas ? que os componentes do sistema (classificadores ou agentes) devem ser diversos entre si. Em outras palavras, n?o existe ganho de desempenho em sistemas formados por um conjunto de componentes id?nticos. Um modo de aumentar a diversidade do sistema ? distribuir os dados do padr?o entre os classificadores que comp?em o sistema.
Neste trabalho ser? feita uma investiga??o sobre o impacto do uso de t?cnicas de distribui??o de dados, mais especificamente distribui??o de caracter?sticas, entre os
componentes de sistemas de combina??o de classificadores. Nesta investiga??o, diferentes t?cnicas de distribui??o de caracter?sticas ser?o usadas e uma an?lise comparativa entre
diferentes sistemas de combina??o, usando diferentes configura??es, ser? feita. Como resultado desta an?lise, espera-se detectar que sistemas de combina??o s?o mais adequados para usar distribui??o de caracter?sticas entre os componentes
|
Page generated in 0.0516 seconds