• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

門檻式自動迴歸模型參數之近似信賴區間 / Approximate confidence sets for parameters in a threshold autoregressive model

陳慎健, Chen, Shen Chien Unknown Date (has links)
本論文主要在估計門檻式自動迴歸模型之參數的信賴區間。由線性自動迴歸 模型衍生出來的非線性自動迴歸模型中,門檻式自動迴歸模型是其中一種經常會被應用到的模型。雖然,門檻式自動迴歸模型之參數的漸近理論已經發展了許多;但是,相較於大樣本理論,有限樣本下參數的性質討論則較少。對於有限樣本的研究,Woodroofe (1989) 提出一種近似法:非常弱近似法。 Woodroofe 和 Coad (1997) 則利用此方法去架構一適性化線性模型之參數的修正信賴區間。Weng 和 Woodroofe (2006) 則將此近似法應用於線性自動迴歸模型。這個方法的應用始於定義一近似樞紐量,接著利用此方法找出近似樞紐量的近似期望值及近似變異數,並對此近似樞紐量標準化,則標準化後的樞紐量將近似於標準常態分配,因此得以架構參數的修正信賴區間。而在線性自動迴歸模型下,利用非常弱展開所導出的近似期望值及近似變異數僅會與一階動差及二階動差的微分有關。因此,本論文的研究目的就是在樣本數為適當的情況下,將線性自動迴歸模型的結果運用於門檻式自動迴歸模型。由於大部分門檻式自動迴歸模型的動差並無明確之形式;因此,本研究採用蒙地卡羅法及插分法去近似其動差及微分。最後,以第一階門檻式自動迴歸模型去配適美國的國內生產總值資料。 / Threshold autoregressive (TAR) models are popular nonlinear extension of the linear autoregressive (AR) models. Though many have developed the asymptotic theory for parameter estimates in the TAR models, there have been less studies about the finite sample properties. Woodroofe (1989) and Woodroofe and Coad (1997) developed a very weak approximation and used it to construct corrected confidence sets for parameters in an adaptive linear model. This approximation was further developed by Woodroofe and Coad (1999) and Weng and Woodroofe (2006), who derived the corrected confidence sets for parameters in the AR(p) models and other adaptive models. This approach starts with an approximate pivot, and employs the very weak expansions to determine the mean and variance corrections of the pivot. Then, the renormalized pivot is used to form corrected confidence sets. The correction terms have simple forms, and for AR(p) models it involves only the first two moments of the process and the derivatives of these moments. However, for TAR models the analytic forms for moments are known only in some cases when the autoregression function has special structures. The goal of this research is to extend the very weak method to the TAR models to form corrected confidence sets when sample size is moderate. We propose using the difference quotient method and Monte Carlo simulations to approximate the derivatives. Some simulation studies are provided to assess the accuracy of the method. Then, we apply the approach to a real U.S. GDP data.

Page generated in 0.1509 seconds