• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 5
  • 1
  • Tagged with
  • 11
  • 11
  • 7
  • 7
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Regulation of Lipid Metabolism and Membrane Trafficking by the Oxysterol Binding Protein Superfamily Member Kes1

LeBlanc, Marissa 12 August 2010 (has links)
The Saccharomyces cerevisiae oxysterol binding protein homologue Kes1/Osh4 is a member of an enigmatic class of proteins found throughout Eukarya. This family of proteins is united by a ?-barrel structure that binds sterols and oxysterols. An N-terminal lid is thought to both sequester sterols inside the core and promote localization of Kes1 to regions of high membrane curvature via a predicted ArfGAP lipid packing sensor motif. Additionally, a phosphoinositide-binding region on a discrete surface of Kes1 has also been identified. In this thesis, structure-function analysis of Kes1 determined that phosphoinositide binding is required for membrane association in vitro, and in vivo phosphoinositide binding is required for localization to the Golgi. Ergosterol, the major sterol in S. cerevisiae, and membrane curvature had minimal effects on membrane association. This study also revealed a role for Kes1 in the regulation of both phosphatidylinositol-4-phosphate and phosphatidylinositol-3-phosphate homeostasis. Phosphoinositide and sterol binding by Kes1 are necessary for it to alter phosphatidylinositol-4-phosphate, but not phosphatidylinositol-3-phosphate homeostasis. Misregulation of phosphatidylinositol-4-phosphate homeostasis by Kes1 manifested itself in an inability of the v-SNARE Snc1 to traffic properly and was consistent with a defect in trans-Golgi/endosome trafficking. I went on to demonstrate a role for Kes1 in regulating the conversion of phosphatidylinositol-4-phosphate to phosphatidylinositol for the synthesis of sphingolipids, and I present a model for the role of Kes1 at the Golgi. Kes1 acts as a sterol sensor that regulates phosphatidylinositol-4-phosphate to sphingolipids metabolism, which ultimately regulates the delivery of proteins that assemble into lipid rafts for their transport from the Golgi to the plasma membrane. I also uncovered a previously unknown role for Kes1 in the regulation of the cytoplasm-to-vacuole and autophagy trafficking pathways, which is mediated by the ability of Kes1 to regulate phosphatidylinositol-3-phosphate homeostasis.
2

Identification et caractérisation d’un nouveau rôle de la sous-unité Gα[indice inférieur]s au niveau du compartiment endosomal

Rosciglione, Stéphanie January 2015 (has links)
Résumé : La protéine Gα[indice inférieur]s est une GTPase hétérotrimérique, actrice principale de la signalisation intracellulaire couplée aux récepteurs couplés aux protéines G (RCPG). Un de ses rôles majeurs est de transmettre l’activation d’un RCPG par un agoniste au niveau de la membrane plasmique, en signal intracellulaire, ceci grâce à un changement conformationnel dû à sa liaison à un GTP. En réponse, la protéine Gα[indice inférieur]s activera principalement la voie de l’AMP cyclique. Or, depuis quelques années, la protéine Gα[indice inférieur]s semble impliquée dans un tout autre phénomène intracellulaire, qu’est le trafic vésiculaire. En effet, sa localisation au niveau du compartiment endosomal laisse perplexe. Certains ont démontré le couplage de cette sous-unité avec des récepteurs internalisés, induisant une signalisation à partir de la membrane endosomale, tandis que d’autres ont démontré une implication de cette sous-unité au niveau du complexe de triage protéique présent sur la membrane endosomale. Ainsi, l’équipe du Dr Farquhar a démontré l’implication de Gα[indice inférieur]s avec la protéine hepatocyte growth factor-regulated tyrosine kinase substrate (HRS) dans la dégradation du récepteur à l’epidermal growth factor (EGF). A travers nos travaux, nous avons pu démontrer une implication générale de la sous-unité Gα[indice inférieur]s dans la régulation de la dégradation endosomale de nombreux récepteurs, comme les RCPG. Nous avons identifié deux complexes, un ubiquitine-indépendant et un ubiquitine-dépendant. Le premier, ubiquitine-indépendant, implique une interaction directe de la protéine Gα[indice inférieur]s avec les proteines GPCR associated sorting protein 1 (GASP-1) et dysbindin. Ces deux protéines ont déjà été démontrées comme étant indispensables à l’adressage du récepteur delta opioïde (DOP) vers le compartiment lysosomal. Nous avons identifié que GASP-1 et dysbindin font le lien entre Gα[indice inférieur]s et HRS, et induisent l’adressage aux lysosomes du récepteur DOP, via les complexes endosomal sorting complexes required for transport (ESCRT). Le second complexe identifié, ubiquitine-dépendant, est spécifique au récepteur C-X-C motif receptor 4 (CXCR4). L’adressage de ce récepteur aux lysosomes fait intervenir de nombreuses enzymes ubiquitine-ligases ainsi que des enzymes déubiquitinases. Nous avons démontré que Gα[indice inférieur]s, via son interaction directe avec l’E3 ubiquitine ligase Deltex 3 like (DTX3L), module l’activation d’une autre E3 ubiquitine ligase atrophin-1 interacting protein 4 (AIP4) et influence l’état d’ubiquitination du complexe ESCRT0, ceci régulant la dégradation du récepteur CXCR4. Paradoxalement, nous avons pu remarquer que les complexes identifiés ne semblent pas affecter les récepteurs couplés à Gα[indice inférieur]s. En effet, les récepteurs connus pour être couplés à la protéine Gα[indice inférieur]s, d’un point de vue signalétique, n’ont pas leur trafic intracellulaire affecté par la déplétion de l’expression de la protéine Gα[indice inférieur]s. De plus, l’état d’activation de Gα[indice inférieur]s ne semble pas influencer ces complexes. / Abstract : The Gα[subscript]s protein is a heterotrimeric GTPase protein, lead actress of intracellular signaling coupled to G protein-coupled receptors (GPCR). One of its major role is to transmit the binding of a ligand on the GPCR at the plasma membrane in intracellular signaling, thanks to a conformational change due to binding to GTP. In response, the activated Gα[subscript]s protein will mainly stimulate the way of cyclic AMP. However, in recent studies, the Gα[subscript]s protein appears to be involved in other intracellular phenomenon, like vesicular trafficking, due to its location at the endosomal compartment. Some studies showed the coupling of this subunit with internalized receptors, inducing signaling from the endosomal membrane, while others have shown implication of this subunit in the protein sorting complex presents on the endosomal membrane. Thus, the team of Dr. Farquhar demonstrated the involvement of Gα[subscript]s protein with hepatocyte growth factor-regulated tyrosine kinase substrate (HRS) protein, in the epidermal growth factor receptor (EGFR) degradation. Through our study, we demonstrated a general involvement of Gα[subscript]s subunit in the regulation of endosomal degradation of many receptors, such as GPCRs. We identified two complexes, an ubiquitin-independent and an ubiquitin-dependent. The first, ubiquitin-independent one, involves a direct interaction of Gα[subscript]s protein with GPCR associated sorting protein 1 (GASP-1) and dysbindin. These two proteins have been previously shown to be essential for delta opioid receptor (DOP) targeting to the lysosomal compartment. We identified that GASP-1 and dysbindin make the link between Gα[subscript]s and HRS, and induce the DOP receptor addressing to lysosomes, via complexes with endosomal sorting complex required for transport (ESCRT). The second complex identified is the ubiquitin-dependent complex, which is specific to the CXC motif receptor 4 (CXCR4). The lysosomal sorting of this receptor involves many ubiquitin ligases and deubiquitinases enzymes. We demonstrated that Gα[subscript]s, through a direct interaction with the E3 ubiquitin ligase Deltex 3 like (DTX3L), modulates the activation of another E3 ubiquitin Atrophin-1 interacting protein ligase 4 (AIP4) and influences the ESCRT-0 ubiquitination pattern. This complex regulates the CXCR4 receptor degradation. Paradoxically, we observed that receptors coupled to Gα[subscript]s are not affected. Indeed, the receptors known to be coupled to the Gα[subscript]s protein have not their intracellular trafficking affected by Gα[subscript]s depletion. Moreover, Gα[subscript]s activation state does not seem to influence these complexes.
3

The impact of the syndecan-PDZ interactome on endosomal trafficking and extracellular vesicle composition / L'impact de l'interaction syndecan-PDZ sur le trafic endosomal et la composition des vésicules extracellulaires

Castro Cruz, Monica del Carmen 19 July 2018 (has links)
Les syndécans forment une famille de quatre protéines transmembranaires qui sont substituées par l'héparane sulfate. Grâce à ces chaînes glucidiques extracellulaires, les syndécans contrôlent la signalisation d'une pléthore de facteurs de croissance et de molécules d'adhésion. Une autre caractéristique remarquable des syndécans est la conservation de leur domaine intracellulaire au cours de l'évolution. Ce domaine contient un motif C-terminal qui peut induire une interaction avec les protéines dites «PDZ». Les interactions PDZ sont promiscues et les protéines PDZ contrôlent divers aspects de la signalisation cellulaire et de la communication cellule-cellule. Quatre interactions syndecan-PDZ ont été décrites à ce jour et toutes ces interactions ont des effets drastiques sur le comportement des cellules. En particulier, il a été documenté que l'interaction syndécan-synténine a un impact sur le trafic intracellulaire de molécules de signalisation liant l’héparan sulfate. De plus, les syndécans et la synténine coopèrent dans le contrôle la biogenèse des exosomes, organites extracellulaires fonctionnant comme des médiateurs importants de la communication cellule-cellule (y compris dans différentes maladies systémiques comme le cancer). Le protéome humain compte 150 protéines PDZ qui contiennent 266 domaines PDZ. Dans ce travail, nous avons mis à jour la complexité de l'interactome syndecan-PDZ et testé son impact sur le trafic membranaire et sur la composition des vésicules extracellulaires. Notre travail ouvre la voie à une meilleure compréhension des réseaux moléculaires contrôlant la communication cellule-cellule en physio-pathologie. / Syndecans form a family of four transmembrane proteins that are substituted with heparan sulfate. By virtue of these extracellular carbohydrate chains, syndecans control the signaling of a plethora of growth factors and adhesion molecules. Another remarkable feature of syndecans is the conservation of their intracellular domain through evolution. This domain contains a C-terminal motif that can mediate interaction with PDZ proteins. PDZ interactions are promiscuous and PDZ proteins control various aspects of cell signaling and cell-cell communication. Four syndecan-PDZ interactions have been described so far and all these interactions have broad effects on cell behavior. In particular, it was documented that syndecan-syntenin interaction has impact on the intracellular trafficking of heparan sulfate cargo. Moreover syndecan-syntenin controls the biogenesis of exosomes, extracellular organelles emerging as important mediators of cell-cell communication in health and diseases. The human proteome contains 150 PDZ proteins and 266 PDZ domains. Here we started addressing the complexity of the syndecan-PDZ interactome and tested for its impact on membrane trafficking and on the composition of extracellular vesicles. Our work paves the way for a better understanding of the molecular mechanisms and networks controlling cell-cell communication in health and disease.
4

L’association du récepteur β2-Adrénergique (β2AR) avec les protéines RGGT et HACE1 module son trafic intracellulaire en régulant les mécanismes de maturation et d’activation de la protéine Rab11a / β2-Adrenergic Receptor (β2AR) association with RGGT and HACE1 modulates its intracellular trafficking by regulating Rab11a maturation and activation mechanisms

Lachance, Véronik January 2014 (has links)
Résumé : L’expression de surface des récepteurs couplés aux protéines G (GPCRs) est un processus hautement régulé et très important dans le maintien de l’homéostasie cellulaire. En effet, un déséquilibre dans leur niveau d’expression est souvent relié à différentes pathologies comme le cancer, le diabète, l’obésité, les maladies cardiovasculaires et les maladies neurodégénératives. C’est pourquoi la compréhension des mécanismes moléculaires influençant ce phénomène est si importante et nous permettra d’élaborer et/ou d’améliorer les médicaments ciblant la régulation de ce processus. Il est bien connu qu’un des acteurs importants dans le trafic vésiculaire des GPCRs est représenté par la famille des Rab GTPases. Effectivement plusieurs de ces dernières, soit les Rabs 1, 2, 4, 5, 6, 7, 8 et 11 pour ne nommer que les plus connues, modulent l’expression de surface des GPCRs. De plus, certaines études soulèvent la possibilité qu’un GPCR soit lui-même capable de réguler son propre trafic intracellulaire, et ce grâce à son interaction avec les Rab GTPases. Toutefois, le mécanisme emprunté par le GPCR pour atteindre cette fin reste à élucider. Dans le présent travail, je démontre que le GPCR, β2AR, module non seulement la maturation de la petite protéine G Rab11a grâce à son interaction avec la Rab GéranylGéranylTransférase (RGGT), mais influence également son activation en modulant son ubiquitination via son association avec la E3-ubiquitine ligase, HACE1. De plus, je révèle que la sous-unité alpha de la RGGT (RGGTA) accroît significativement la maturation et le transport antérograde du récepteur β2AR, ce qui souligne ainsi un nouveau rôle cellulaire pour cette protéine. L’ensemble des résultats générés appuie l’hypothèse qu’un GPCR puisse contrôler son propre routage intracellulaire, et éclaircit les mécanismes utilisés pour réguler l’activé de la Rab GTPase avec laquelle il interagit. // Abstract : Cell surface expression of G Protein-Coupled Receptors (GPCRs) is a highly regulated and very important phenomenon for keeping cellular homeostasis. In fact, dysregulation of their cell expression is related to many diseases like cancer, neurological disorders, obesity, diabetes and cardiovascular diseases. These facts illustrate how important understanding the molecular mechanisms involved in cell surface transport of those receptors is, which will help us in designing or improving drugs which actually target this pathway. Rab GTPases are proteins known for being essential regulators of GPCR vesicular trafficking. Indeed, an increasing number of studies report the implication of Rab1, 2, 4, 5, 6, 7, 8 and 11 (to cite the most frequently studied) cell surface transport of GPCRs. Moreover, some studies also put forward the possibility that a GPCR might be able to regulate its own cellular trafficking by interacting and controlling activation of Rab GTPases. However, the mechanism involved in this process remains to be clarified. In the present study, I demonstrate that the prototypic GPCR, β2AR, not only modulates prenylation/maturation of the small G protein Rab11a by interacting with Rab GeranylGeranylTransferase (RGGT), but also influences Rab11a activation by modulating its ubiquitination via its association with the E3-ubiquitin ligase, HACE1. Furthermore, I reveal that the α subunit of the RGGT (RGGTA) also promotes the maturation and anterograde transport of the receptor, which highlight a new cellular role for this protein. Altogether, those results support the hypothesis that GPCRs control their own trafficking, and shed light on some of the mechanisms that might be employed by those receptors in activation of Rab GTPases.
5

Rôle de la surexpression des flotillines dans l'activation de voie de signalisation oncogéniques induisant la transition épithélio-mésenchymateuse / Impact of flotillin-upregulation on the activation of signaling pathways inducing the Epithelial to mesenchymal tTransition in mammary cells

Genest, Mallory 04 February 2019 (has links)
L’invasion cellulaire est un phénomène clé du développement tumoral au cours duquel les cellules réalisent une transition épithélio-mésenchymateuse (TEM) caractérisée par des changements d’expression de gènes clés dans la régulation de l’adhérence et de la morphologie cellulaire. L’expression de ces gènes est sous le contrôle de voies de signalisation, qui lors du processus de tumorigenèse sont dérégulées. La dérégulation de ces voies est multifactorielle et peut-être initiée par une activation de récepteurs présents à la membrane plasmique.Dans ce contexte, nous avons mis en évidence que les flotillines sont d’importants régulateurs de l’activation de ces récepteurs et des voies de signalisation en aval qui conduisent à l’induction de la TEM. Les flotillines 1 et 2 sont des protéines ubiquitaires très conservées. Le niveau d’expression des flotillines est accru dans de nombreux cancers invasifs et ceci est un facteur de mauvais pronostic. En condition physiologique, non surexprimées, les flotillines sont majoritairement à la membrane plasmique. Surexprimées les flotillines induisent la formation d’endolysosomes ayant une faible activité de dégradation, dans lesquels elles sont retrouvées.Mes travaux montrent que l’augmentation de l’expression des flotillines dans des cellules normales mammaires est suffisante pour induire le processus de TEM, processus clé de l’invasion tumorale. De plus nous montrons que la surexpression des flotillines génère une voie de trafic vésiculaire que nous nommons UFIT (Upregulated flotillin Induced Trafficking pathway) et qui affecte le trafic de plusieurs récepteurs membranaires connus pour participer à l’activation des voies oncogéniques inductrices de la TEM. Dans le cas particulier d’un de ces récepteurs, AXL, cible thérapeutique dans les cancers du sein, nous montrons que la surexpression des flotillines régule son endocytose et l’adresse dans les endosomes de signalisation riches en flotillines tout en le protégeant de la dégradation. Ces travaux apportent donc des explications nouvelles quant au rôle des flotillines dans le processus d’invasion cellulaire conduisant à la formation des métastases. / Tumor cell invasion and consecutive metastasis formation are the main cause of death in cancer patients. One crucial process of tumor cell invasion is the epithelial to mesenchymal transition (EMT), a reversible process during which polarized epithelial cells convert into motile mesenchymal cells. This process is characterized by gene expression changes involved, in particular, in the perturbation of cell adhesion, polarity and cytoskeletal structures.Flotillin 1 and 2 are two ubiquitous and highly conserved membrane proteins that assemble in large oligomers, known to participate in membrane protein clustering and endocytosis. Flotillins are upregulated in many invasive cancers and are considered as markers of poor prognosis. At physiological expression level, flotillins are mainly located at the plasma membrane. The cellular distribution of upregulated flotillins is dramatically modified with a strong enrichment in vesicular compartments that we characterized as non-degradative-endolysosomes.During my PhD project, we identified that flotillins are key EMT inducer. We upregulated flotillins in normal mammary cells and demonstrated that it is sufficient to promote EMT. Using several global comparative analyses (transcriptomic, phosphokinase arrays), we showed that flotillin upregulation activates key oncogenic signaling pathways and plasma membrane receptors. We identified that flotillin overexpression induces a trafficking pathway that we named UFIT-pathway (Upregulated flotillin Induced Trafficking pathway), which promotes the endocytosis of several cargos, amongst them membrane receptors involved in the activation of oncogenic pathways.Our results suggest that the UFIT pathway generates flotillin-positive endolysosomes acting as as “signalosome compartments” involved in the activation of signaling pathways stimulating EMT and cellular invasion.
6

La petite GTPase Rab11 et ses interacteurs orchestrent la migration cellulaire collective et la cytocinèse chez la Drosophile

Laflamme, Carl 05 1900 (has links)
Le trafic vésiculaire permet un échange coordonné de molécules entre les différents organites de la cellule et dépend largement des petites GTPases de la famille des Rabs dont le nombre varie entre 27 chez la Drosophile et 70 chez l’Homme. Un des prochains défis consiste donc à élucider les mécanismes cellulaires qui coordonnent l’activité de ces Rabs, laquelle garantit un transport vésiculaire ordonné au sein de la cellule. Les Rabs agissent comme des interrupteurs moléculaires grâce à leur capacité à cycler entre un état actif et inactif. L’activité des Rabs est contrôlée par des protéines régulatrices puis des effecteurs en aval coordonnent leurs différentes fonctions. La petite GTPase Rab11 est essentielle au développement de plusieurs organismes incluant la Drosophile, C. elegans et la souris puisqu’elle se retrouve au cœur de différentes voies de transport. D’ailleurs, le trafic de molécules dépendant de Rab11 est perturbé dans plusieurs pathologies. Malgré son rôle central dans le trafic vésiculaire, la régulation de Rab11 reste peu comprise in vivo. Cette thèse se penche sur les mécanismes moléculaires contrôlant les fonctions de Rab11 et de ses effecteurs lors de la migration cellulaire collective et lors de la cytocinèse. Nous avons identifié Evi5 comme un nouvel acteur clé de la migration cellulaire collective, et nous montrons qu’elle possède une activité Rab11-GAP essentielle pour maintenir les récepteurs de guidance actifs de façon polarisée au front de migration. Nous avons ensuite déterminé que Rab11 régule la communication cellulaire lors de la migration collective par l’entremise de son interaction avec la Moésine. Une question reste toutefois en suspens : sachant que Rab11 compte plus de 13 effecteurs, quels sont les mécanismes assurant la spécificité de l’interaction entre cette GTPase et un effecteur particulier? Une partie de la réponse provient peut-être de nos observations que les membres des Rab11-FIPs de classe I, une famille d’effecteurs de Rab11, interagissent avec les protéines d’échafaudage 14-3-3. Chez la Drosophile, Rip11 est le seul représentant des Rab11-FIPs de classe I et nous montrons que Rip11 aurait des fonctions inattendues durant la cytocinèse qui seraient coordonnées par 14-3-3. Nos recherches permettent de dresser un portrait plus authentique des mécanismes moléculaires régulant les différentes fonctions de Rab11 et de ses effecteurs in vivo. / Vesicle trafficking allows coordinated exchange of molecules between the cell organelles and depends largely on small GTPases of the Rab family which contains 27 members in Drosophila and 70 in Human. One challenge is to identify the cellular mechanisms which coordinate Rab activity to ensure ordered vesicle transport within the cell. Rab proteins act like molecular switch by cycling between an active and an inactive state. Rab activity is regulated by helper proteins, whereas downstream effector proteins coordinate the Rab functions. The small GTPase Rab11 is crucial for Drosophila, C. elegans and mouse development since Rab11 is at the heart of different transport routes. Thus, Rab11-dependent trafficking of molecules is perturbed in different pathologies. Despite its central role during vesicle trafficking, the regulation of Rab11 in vivo is poorly characterized. This thesis focus on the molecular mechanisms controlling the function of Rab11 and its effectors during collective cell migration and cytokinesis. We identify Evi5 as a novel key regulator of collective cell migration and we show that Evi5 has Rab11-GAP activity essential for maintaining active guidance receptors at the leading edge. We then show that Rab11 regulates cell communication during collective cell movement through its interaction with Moesin. A question still remained unanswered: knowing that Rab11 has more than 13 effectors, which mechanisms assure the specificity of interaction between this small GTPase and a particular effector? Part of the answer might come from our observation that class I Rab11-FIPs, known Rab11 effectors, are able to bind to the 14-3-3 scaffolding proteins. In Drosophila, Rip11 is the sole member of the class I Rab11-FIPs and we show that Rip11 has unexpected functions during cytokinesis which are coordinated by 14-3-3. Our research allows us to better understand the molecular mechanisms regulating Rab11 and its effectors in vivo.
7

Étude du trafic vésiculaire des récepteurs glutamatergiques de type AMPA : caractérisation d’une nouvelle protéine auxiliaire / Study of the vesicular trafficking of AMPA-type glutamate receptor : saraterization of a novel AMPA receptor auxiliairy protein

Renancio, Cédric 18 December 2013 (has links)
Les récepteurs du glutamate de type AMPA (rAMPA) sont les acteurs principaux de la transmission synaptique excitatrice rapide. Leur abondance au niveau de la densité postsynaptique est essentielle pour l'établissement et le maintien de la fonction synaptique, et est le résultat d'un trafic hautement dynamique. De nombreuses études ont permis de caractériser les mécanismes de diffusion membranaire impliqués dans l’adressage des rAMPA jusqu’à la synapse. Le rôle majeur des protéines auxiliaires des rAMPA dans la modulation de cette étape de trafic a été démontré. Par ailleurs, il est suggéré que la localisation synaptique des rAMPA est aussi régulée lors des phases plus précoces du trafic intracellulaire, c’est-à-dire de l'appareil de Golgi vers la membrane plasmique via les vésicules post-Golgiennes. Cependant le trafic vésiculaire post-Golgien des rAMPA n'a jamais été visualisé et reste donc encore très mal compris. En collaboration avec l'équipe de Guus Smit (Amsterdam), j’ai participé à la caractérisation d’une nouvelle protéine auxiliaire des rAMPA, appelée Shisa6. Dans le cadre de ce projet, j’ai pu étudier le rôle de cette protéine sur la diffusion membranaire des rAMPA en utilisant une technique de suivi de particule unique (Quantum dot) développée au laboratoire. Mon projet de thèse principal a consisté à étudier le trafic vésiculaire post-Golgien des rAMPA par le développement d’une nouvelle méthode d’étude. En effet, l'échec dans la visualisation dynamique du trafic vésiculaire des récepteurs pourrait être expliqué par un faible rapport signal/bruit, conséquence d'une faible concentration vésiculaire en rAMPA combinée à un bruit de fond important dû aux marquages provenant du réticulum endoplasmique (RE) et de la membrane plasmique. Dans le but de surpasser cette difficulté, nous avons mis au point un outil ingénieux (système ARIAD) afin de bloquer les rAMPA dans le RE et contrôler, par l'ajout d'un ligand, leur sécrétion du RE jusqu'à la membrane plasmique. Grâce à cet outil, nous avons non seulement augmenté considérablement la concentration des rAMPA dans les vésicules post-Golgiennes, mais aussi éliminé le bruit de fond membranaire. Par la technique de FRAP nous avons pu éliminer le bruit de fond provenant du RE. Une telle approche, combinée à des techniques d'imagerie sur neurones vivants, nous a permis de visualiser pour la première fois le trafic vésiculaire post-Golgien des rAMPA et de l’étudier. / AMPA-type glutamate receptors (AMPAR) are the main actors of the fast excitatory synaptic transmission. Their abundance at the postsynaptic density is essential for the establishment and maintenance of synaptic function, and is the result of a highly dynamic trafficking. Many studies have characterized the membrane diffusion mechanisms involved in the AMPAR synaptic localization, and revealed the critical role of the AMPAR auxiliary proteins in the modulation of this trafficking. Furthermore, it is suggested that AMPAR synaptic localization is also regulated during the early steps of the intracellular trafficking, from the Golgi apparatus to the plasma membrane via the post-Golgi vesicles. However, the post-Golgi vesicular trafficking of AMPAR has never been visualized and therefore remains poorly understood. In collaboration with the Guus Smit team (Amsterdam), I participated in the caracterization of a novel AMPAR auxiliary protein called Shisa6. As part of this project, I studied the role of this protein on the AMPAR membrane diffusion, using a method of single particle tracking (Quantum dot) developed in the laboratory. My main thesis project was to study the post-Golgi vesicular trafficking of AMPAR through the development of a new experimental protocol. Indeed, the failure in the dynamic visualization of the receptor vesicular trafficking could be explained by a low signal/noise ratio resulting of a poor AMPAR vesicular concentration, combined with a high background noise due to receptors localized both in the endoplasmic reticulum (ER) and at the plasma membrane. In order to overcome this difficulty, we have used an ingenious tool (ARIAD system) so as to block AMPAR into the ER and, by adding a ligand, control their trafficking from the ER to the plasma membrane. Thanks to this tool we have not only significantly increased the AMPAR concentration in the post-Golgi vesicles, but also eliminated the plasma membrane background noise. The FRAP imaging technique was used in order to remove the ER background noise. Such methodological approach combined with imaging techniques in living neurons, allowed us to clearly visualize for the first time the post-Golgi vesicular trafficking of AMPAR, and to study the mechanisms involved in this trafficking.
8

Membrane Stress and the Role of GYF Domain Proteins

Georgiev, Alexander January 2008 (has links)
<p>Intracellular membrane trafficking is regulated by a large number of protein complexes and lipids. Blocking of trafficking disrupts normal membrane dynamics and causes membrane stress. Two similar proteins from <i>Saccharomyces cerevisiae</i>, Myr1 and Smy2, each containing a polyproline-binding GYF domain, were discovered in separate screens for dosage suppressors of trafficking mutations. The functions of GYF domain proteins are poorly described despite its determined structure and a number of known polyproline peptide ligands. We predicted, using computational analysis, associations between mRNA decay factors and both Myr1 and Smy2, and further demonstrated that they localize to sites of mRNA degradation upon stress, in a GYF domain dependent manner.</p><p>Ypt6 is a small GTPase that regulates vesicle docking at the late Golgi in budding yeast. Myr1 was found as a novel suppressor during the screening of a genomic library in a null ypt6 mutant. Myr1 additionally was capable of rescuing the temperature sensitive growth of a Ric1 deficient strain. Importantly, Ric1 is an activator of Ypt6 and is synthetic lethal with Myr1. Biochemical characterization of the Myr1 protein revealed a limited solubility and an ability to bind cellular membranes, likely relevant to the rescue of trafficking mutants.</p><p>We further assayed the affinity of Myr1 domains to liposomes of distinct composition. Preference for negatively charged lipids suggested possible electrostatic interactions with polybasic clusters within C-terminal regions of Myr1. In contrast, the N-terminus with the GYF domain was found to be capable of self-association. Membrane stress caused by a lipid-bilayer perturbing drug resulted in induced formation of mRNA processing bodies. Cumulatively, these studies suggest that Myr1 functions in the regulation of mRNA stability via its GYF domain, and can sense membrane stress by binding to the lipid bilayer.</p>
9

Membrane Stress and the Role of GYF Domain Proteins

Georgiev, Alexander January 2008 (has links)
Intracellular membrane trafficking is regulated by a large number of protein complexes and lipids. Blocking of trafficking disrupts normal membrane dynamics and causes membrane stress. Two similar proteins from Saccharomyces cerevisiae, Myr1 and Smy2, each containing a polyproline-binding GYF domain, were discovered in separate screens for dosage suppressors of trafficking mutations. The functions of GYF domain proteins are poorly described despite its determined structure and a number of known polyproline peptide ligands. We predicted, using computational analysis, associations between mRNA decay factors and both Myr1 and Smy2, and further demonstrated that they localize to sites of mRNA degradation upon stress, in a GYF domain dependent manner. Ypt6 is a small GTPase that regulates vesicle docking at the late Golgi in budding yeast. Myr1 was found as a novel suppressor during the screening of a genomic library in a null ypt6 mutant. Myr1 additionally was capable of rescuing the temperature sensitive growth of a Ric1 deficient strain. Importantly, Ric1 is an activator of Ypt6 and is synthetic lethal with Myr1. Biochemical characterization of the Myr1 protein revealed a limited solubility and an ability to bind cellular membranes, likely relevant to the rescue of trafficking mutants. We further assayed the affinity of Myr1 domains to liposomes of distinct composition. Preference for negatively charged lipids suggested possible electrostatic interactions with polybasic clusters within C-terminal regions of Myr1. In contrast, the N-terminus with the GYF domain was found to be capable of self-association. Membrane stress caused by a lipid-bilayer perturbing drug resulted in induced formation of mRNA processing bodies. Cumulatively, these studies suggest that Myr1 functions in the regulation of mRNA stability via its GYF domain, and can sense membrane stress by binding to the lipid bilayer.
10

Investigation of the molecular mechanisms controlling Nitrogen Catabolite Repression-sensitive gene expression in Saccharomyces cerevisiae / Etude des mécanismes moléculaires contrôlant l'expression des gènes sensibles à la répression catabolique azotée chez Saccharomyces cerevisiae

Fayyad Kazan, Mohammad 20 June 2014 (has links)
Nitrogen Catabolite Repression (NCR) is the regulatory pathway through which Saccharomyces cerevisiae reduces the expression of genes encoding components involved in the utilization of poor nitrogen sources when rich ones are available. Expression of NCR-sensitive genes is controlled by the negative regulator Ure2 and four DNA-binding GATA-like transcription factors: two activators (Gln3 and Gat1) and two repressors (Dal80 and Gzf3). In the presence of preferred nitrogen sources, Gln3 and Gat1 are sequestered in the cytoplasm in a Ure2-dependent manner, whereas upon growth under non-preferred nitrogen conditions, the GATA activators relocate to the nucleus and mediate the transcription of NCR-sensitive genes. Even though the Target of Rapamycin Complex 1 (TORC1) as well as several phosphatases are involved in regulating Gln3 and Gat1 subcellular localization, a detailed mechanistic understanding of the NCR process is still lacking. <p>In the first part of this work, we have shown that class C and D VPS (vacuolar protein sorting) components, involved in Golgi-to-vacuole vesicular trafficking, are required for intact Gat1 and Gln3 nuclear localization in response to TORC1-inhibiting rapamycin treatment or upon shifting cells from rich to poor nitrogen conditions. The requirements of Vps proteins for Gln3 function are media-specific: a requirement after rapamycin treatment was observed in minimal but not in rich medium. Moreover, we have seen that a significant fraction of Gat1, like Gln3, is associated with light intracellular membranes. These observations support the view that GATA factor regulation in response to nitrogen signals seems to occur at intracellular compartments.<p>In a second step, we confirmed an important role for the anabolic glutamate dehydrogenase (Gdh1) within NCR, through the control of Gat1 function. However, since we observed a strong correlation between the anabolic activity of Gdh1 and its NCR regulatory capacity, we do not exclude that an alteration of Gdh1-substrates or any other metabolite could be responsible for the phenotype exhibited by gdh1 mutants. We also showed that there is no simple and direct link between the intracellular levels of glutamine/glutamate (reported in the literature as signals for NCR), TORC1 activity and NCR. In conclusion, the mechanisms regulating the perception of the quality of the nitrogen sources are still not fully understood. <p>Several screens for multi-copy suppression of mutated phenotypes were conducted during this work and led to the identification of several elements (URE2, BAP2, STP2, GZF3 and KDX1) that could interfere with NCR-sensitive gene expression. Among these, the gene encoding the Kdx1 kinase was identified in two independent screens. <p>In the last part of this work, we uncovered a role for leucine in NCR signaling. We showed that the addition of leucine in the culture medium could impair Gat1-dependent expression of certain NCR genes, while leucine starvation had no effect at this level. The repressive effect of leucine appeared to involve elements of the SPS signaling pathway which is required for the induction of genes encoding amino acid transporters in response to extracellular amino acids. The mechanism(s) by which leucine regulates Gat1 function is still not fully clear and requires further investigation:La levure Saccharomyces cerevisiae adapte l’expression de ses gènes selon la disponibilité en azote dans son environnement au moyen d’un contrôle majeur appelé répression catabolique azotée (NCR, pour « nitrogen catabolite repression ». L’expression des gènes NCR est contrôlée par un régulateur négatif de type prion (Ure2) et quatre facteurs de transcription de type GATA :deux activateurs, Gat1 et Gln3 et deux répresseurs, Dal80 et Gzf3. Bien que le complexe TORC1 et les phosphatases qu’il régule soient impliquées dans la régulation NCR, le mécanisme précis par lequel la NCR se produit est loin d’être compris.<p>Dans la première partie de ce travail, nous avons montré que les composants VPS (vacuolar protein sorting) de classe C et D, impliqués dans le trafic vésiculaire entre le Golgi et la vacuole, sont requis pour que Gat1 et Gln3 rejoignent le noyau en réponse à un traitement par la rapamycine, un inhibiteur de TORC1. En accord avec cette observation, nous avons montré que Gat1, comme Gln3, est associé aux membranes intracellulaires légères. <p>Dans un second temps, nous avons confirmé un rôle important pour la glutamate déshydrogénase anabolique (Gdh1) au sein de la NCR, par l’intermédiaire du contrôle de la fonction de Gat1. Cependant, étant donné qu’il semble exister une forte corrélation entre l’activité anabolique de Gdh1 et sa capacité à réguler la NCR, nous n’excluons pas qu’une altération des substrats de Gdh1 ou de tout autre métabolite pourrait être responsable du phénotype observé du mutant gdh1. Nous avons également montré qu’il n’existait pas de lien simple et direct entre niveaux intracellulaires de glutamine/glutamate, activité de TORC1 et signalisation NCR. En conclusion, les mécanismes conditionnant la perception de la qualité de l’aliment azoté sont encore méconnus à ce jour. <p>Plusieurs cribles de suppression multicopie ont été menés pendant ce travail et ont conduit à l’identification de plusieurs éléments pouvant éventuellement intervenir dans la voie de signalisation NCR. Parmi ceux-ci, le gène codant pour la kinase KDX1 a été identifié à deux reprises. Nous avons caractérisé en détail le rôle qu’elle joue dans la régulation des gènes NCR.<p>Dans la dernière partie de ce travail, nous avons montré que l’addition de leucine dans le milieu de culture pouvait affecter l’expression Gat1-dépendante de certains gènes NCR, alors que par ailleurs une carence en leucine est sans effet à ce niveau. Cet effet de répression par la leucine semble nécessiter des éléments de la voie de signalisation SPS, requise pour l’induction, en réponse aux acides aminés extracellulaires, de gènes codant pour des transporteurs d’acides aminés. <p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished

Page generated in 0.0741 seconds