1 |
Temperature dependence of lattice dynamics in quasicrystals / Temperature Abhängigkeit von Gittern dynamik in QuasikristallenEl Hor, Hamid 04 February 2004 (has links) (PDF)
The work presented in this thesis was motivated by the large amount of
experimental investigations of the phonons in quasicrystals. The
generalized vibrational density of states (GVDOS) was measured for
many quasicrystalline phases and in some cases at different
temperatures [suck et al (1997), Dugain et al (1997)].
The progress achieved in the structure determination of approximants
to some quasicrystals was a legitimate motivation for numerical
investigations of lattice dynamics in these structures.
Two different types of interatomic interactions were used: the spring
model and the ab-initio pair potentials.
The investigations explained the shape of some experimentally measured
GVDOS (d-AlNiCo, o-Al13Co4 and i-ZnMgY)
via the calculation of the partial vibrational densities of states.
Both calculated and measured GVDOS of the d-AlNiCo phase showed an
intensity excess at low energies relatively to the ideal Debye
behaviour.
This excess was found to be a consequence of the existence of special
modes at theses energies which are called ``quasi-localized
modes''. These modes seem to be characteristic of the lattice dynamics
in the complex Al-TM structures.
To calculate the frequency shift due to the shift of the GVDOS through
low energies observed experimentally at high temperatures, a new
method based on a Monte-Carlo simulation was developed. It was shown
that the quasi-localized modes introduce large frequency shifts at
low energies.
Finally, the vibrational entropy was also investigated, and it was
found that it contributes to the stabilization of the complex
structures over the relatively simple structures at high temperatures. / Die Arbeit, die in dieser Dissertation präsentiert wird, wurde durch eine
Vielzahl von experimentellen Beobachtungen von Phononen in Quasikristallen
motiviert. Die verallgemeinerte vibrationelle Zustandsdichte
(GVDOS, generalized
vibrational density of states) wurde für viele quasikristalline Phasen
gemessen und für einige auch bei verschiedener Temperatur [Suck et al.
(1997),
Dugain et al. (1997)]. Der Fortschritt, der in der Bestimmung von
Näherungen
für einige Quasikristalle erreicht wurde war eine legitime Motivation für
numerische Untersuchungen der Gitterdynamik auf diesen Strukturen. Es wurden
zwei unterschiedliche interatomare Wechselwirkungen verwendet: Das Federmodell
und die ab-initio Paar Potentiale. Die Untersuchungen erklärten die
Form einiger
experimenteller GVDOS-Messungen (d-AlNiCo, o-Al13Co4 und i-ZnMgY)
mittels der Berechnung der partiellen vibrationellen Zustandsdichte.
Beide, berechnete und gemessene, GVDOS der d-AlNiCo Phase zeigten einen
Intensitätsanstieg bei kleinen Energien relativ zum idealen Debye Verhalten.
Dieser Anstieg stellte sich als Konsequenz der Existenz von besonderen Moden
bei diesen Energien heraus, die quasi-lokalisierte Moden genannt werden.
Diese Moden scheinen charakteristisch für die Gitterdynamik in den komplexen
Al-TM Strukturen zu sein. Um die experimentell beobachtete Frequenzverschiebung
aufgrund der Verschiebung der GVDOS durch niedrige Energien zu berechnen, wurde
eine neue, auf Monte-Carlo Simulation beruhende, Methode entwickelt. Es wurde
gezeigt, daß die quasi-lokalisierten Moden große
Frequenzverschiebungen bei
kleinen Energien hervorrufen. Letzt-lich wurde auch die vibrationelle Entropie
untersucht und es stellte sich heraus, daß sie bei hohen Temperaturen
dazu
beiträgt die komplexen Strukturen gegenüber den relativ einfachen zu
stabilisieren.
|
2 |
Temperature dependence of lattice dynamics in quasicrystalsEl Hor, Hamid 04 February 2003 (has links)
The work presented in this thesis was motivated by the large amount of
experimental investigations of the phonons in quasicrystals. The
generalized vibrational density of states (GVDOS) was measured for
many quasicrystalline phases and in some cases at different
temperatures [suck et al (1997), Dugain et al (1997)].
The progress achieved in the structure determination of approximants
to some quasicrystals was a legitimate motivation for numerical
investigations of lattice dynamics in these structures.
Two different types of interatomic interactions were used: the spring
model and the ab-initio pair potentials.
The investigations explained the shape of some experimentally measured
GVDOS (d-AlNiCo, o-Al13Co4 and i-ZnMgY)
via the calculation of the partial vibrational densities of states.
Both calculated and measured GVDOS of the d-AlNiCo phase showed an
intensity excess at low energies relatively to the ideal Debye
behaviour.
This excess was found to be a consequence of the existence of special
modes at theses energies which are called ``quasi-localized
modes''. These modes seem to be characteristic of the lattice dynamics
in the complex Al-TM structures.
To calculate the frequency shift due to the shift of the GVDOS through
low energies observed experimentally at high temperatures, a new
method based on a Monte-Carlo simulation was developed. It was shown
that the quasi-localized modes introduce large frequency shifts at
low energies.
Finally, the vibrational entropy was also investigated, and it was
found that it contributes to the stabilization of the complex
structures over the relatively simple structures at high temperatures. / Die Arbeit, die in dieser Dissertation präsentiert wird, wurde durch eine
Vielzahl von experimentellen Beobachtungen von Phononen in Quasikristallen
motiviert. Die verallgemeinerte vibrationelle Zustandsdichte
(GVDOS, generalized
vibrational density of states) wurde für viele quasikristalline Phasen
gemessen und für einige auch bei verschiedener Temperatur [Suck et al.
(1997),
Dugain et al. (1997)]. Der Fortschritt, der in der Bestimmung von
Näherungen
für einige Quasikristalle erreicht wurde war eine legitime Motivation für
numerische Untersuchungen der Gitterdynamik auf diesen Strukturen. Es wurden
zwei unterschiedliche interatomare Wechselwirkungen verwendet: Das Federmodell
und die ab-initio Paar Potentiale. Die Untersuchungen erklärten die
Form einiger
experimenteller GVDOS-Messungen (d-AlNiCo, o-Al13Co4 und i-ZnMgY)
mittels der Berechnung der partiellen vibrationellen Zustandsdichte.
Beide, berechnete und gemessene, GVDOS der d-AlNiCo Phase zeigten einen
Intensitätsanstieg bei kleinen Energien relativ zum idealen Debye Verhalten.
Dieser Anstieg stellte sich als Konsequenz der Existenz von besonderen Moden
bei diesen Energien heraus, die quasi-lokalisierte Moden genannt werden.
Diese Moden scheinen charakteristisch für die Gitterdynamik in den komplexen
Al-TM Strukturen zu sein. Um die experimentell beobachtete Frequenzverschiebung
aufgrund der Verschiebung der GVDOS durch niedrige Energien zu berechnen, wurde
eine neue, auf Monte-Carlo Simulation beruhende, Methode entwickelt. Es wurde
gezeigt, daß die quasi-lokalisierten Moden große
Frequenzverschiebungen bei
kleinen Energien hervorrufen. Letzt-lich wurde auch die vibrationelle Entropie
untersucht und es stellte sich heraus, daß sie bei hohen Temperaturen
dazu
beiträgt die komplexen Strukturen gegenüber den relativ einfachen zu
stabilisieren.
|
3 |
Incorporação do volume ao método variacional de clusters. / The volume as a variable in the Cluster Variation Method.Eleno, Luiz Tadeu Fernandes 19 August 2003 (has links)
O CVM - Cluster Variation Method, ou Método Variacional de Clusters é um método para cálculos termodinâmicos, baseado na aproximação de campo médio para a energia livre. Em sua concepção original, o CVM dispõe apenas de contribuições configuracionais. A proposta do presente trabalho é neste sentido aprimorar o método com a incorporação de outras componentes à energia livre. Acreditamos que as contribuições volumétricas, tanto dilatacionais quanto vibracionais, são de grande importância, e estas contribuições à energia livre foram aqui adicionadas ao método. Outro objetivo do presente trabalho foi verificar se esta abordagem solucionaria o problema da escala de temperaturas de cálculos ab initio aliados ao CVM. Nestes cálculos, a escala de temperaturas dos diagramas de fases geralmente é duas a três vezes maior que o verificado experimentalmente ou, equivalentemente, que os resultados CVM a partir de dados experimentais. Um novo algoritmo de minimização foi deste modo proposto para levar em conta os efeitos vibracionais e a inclusão do volume como variável. O algoritmo é baseado no NIM (Natural Iteration Method), que é utilizado para a minimização no caso configuracional. Um método para os cálculos vibracionais foi elaborado a partir do modelo de Debye-Grüneisen, com considerações adicionais elásticas, adaptado para sistemas multicomponentes (isto é, ligas). O modelo é baseado naquele desenvolvido por Anderson, quando existem dados ab initio de constantes elásticas, ou Moruzzi-Janak-Schwarz caso contrário. Em cálculos ab initio é possível determinar as constantes elásticas de cada estrutura considerada. Com estes dados, a temperatura de Debye e o módulo de volume a 0K são determinados com maior precisão. Dados de primeiros princípios relativos a energias de coesão/formação em função do volume para o sistema prototípico Fe-Al CCC (ferro-alumínio cúbico de corpo centrado) foram utilizados como exemplo para a obtenção de parâmetros para o modelo. / The Cluster Variation Method (CVM), used in thermodynamical calculations, is based in the mean-field approximation to the free energy. The CVM was originally devised to treat configurational-only cases. The scope of the present work is to enhance the method's capabilities, introducing other free energy components. The volumetric contributions, either dilatacional or vibrational, are believed to be of great importance, and are therefore incorporated here in the method. Another aim is to verify whether this approach would solve the temperature range calculated with CVM using ab initio data. In this kind of calculation, the phase diagram temperature range is usually twice or three times as large as experimentally verified or, equivalently, as the ones obtained in CVM calculations using experimental data. Therefore, a new minimisation algorithm was proposed to handle with the vibrational effects and the volume as a variable. The algorithm is based on the NIM (Natural Iteration Method), which is used for the minimization in the configurational case. The Debye-Grüneisen approximation has been adapted, with elastical considerations, for multicomponent systems (i.e., alloys). The method is based on Anderson model, when ab initio elastic constants are available, or on Moruzzi-Janak-Schwarz model otherwise. In ab initio calculations it is possible to determine the elastic constants for each structure considered. Using these data, Debye temperature and bulk modulus at 0K are determined with greater accuracy. First-principles cohesion/formation energies in function of volume for the b.c.c. Fe-Al (body-centered cubic iron-aluminum) system were used as an example to derive parameters to the model.
|
4 |
Incorporação do volume ao método variacional de clusters. / The volume as a variable in the Cluster Variation Method.Luiz Tadeu Fernandes Eleno 19 August 2003 (has links)
O CVM - Cluster Variation Method, ou Método Variacional de Clusters é um método para cálculos termodinâmicos, baseado na aproximação de campo médio para a energia livre. Em sua concepção original, o CVM dispõe apenas de contribuições configuracionais. A proposta do presente trabalho é neste sentido aprimorar o método com a incorporação de outras componentes à energia livre. Acreditamos que as contribuições volumétricas, tanto dilatacionais quanto vibracionais, são de grande importância, e estas contribuições à energia livre foram aqui adicionadas ao método. Outro objetivo do presente trabalho foi verificar se esta abordagem solucionaria o problema da escala de temperaturas de cálculos ab initio aliados ao CVM. Nestes cálculos, a escala de temperaturas dos diagramas de fases geralmente é duas a três vezes maior que o verificado experimentalmente ou, equivalentemente, que os resultados CVM a partir de dados experimentais. Um novo algoritmo de minimização foi deste modo proposto para levar em conta os efeitos vibracionais e a inclusão do volume como variável. O algoritmo é baseado no NIM (Natural Iteration Method), que é utilizado para a minimização no caso configuracional. Um método para os cálculos vibracionais foi elaborado a partir do modelo de Debye-Grüneisen, com considerações adicionais elásticas, adaptado para sistemas multicomponentes (isto é, ligas). O modelo é baseado naquele desenvolvido por Anderson, quando existem dados ab initio de constantes elásticas, ou Moruzzi-Janak-Schwarz caso contrário. Em cálculos ab initio é possível determinar as constantes elásticas de cada estrutura considerada. Com estes dados, a temperatura de Debye e o módulo de volume a 0K são determinados com maior precisão. Dados de primeiros princípios relativos a energias de coesão/formação em função do volume para o sistema prototípico Fe-Al CCC (ferro-alumínio cúbico de corpo centrado) foram utilizados como exemplo para a obtenção de parâmetros para o modelo. / The Cluster Variation Method (CVM), used in thermodynamical calculations, is based in the mean-field approximation to the free energy. The CVM was originally devised to treat configurational-only cases. The scope of the present work is to enhance the method's capabilities, introducing other free energy components. The volumetric contributions, either dilatacional or vibrational, are believed to be of great importance, and are therefore incorporated here in the method. Another aim is to verify whether this approach would solve the temperature range calculated with CVM using ab initio data. In this kind of calculation, the phase diagram temperature range is usually twice or three times as large as experimentally verified or, equivalently, as the ones obtained in CVM calculations using experimental data. Therefore, a new minimisation algorithm was proposed to handle with the vibrational effects and the volume as a variable. The algorithm is based on the NIM (Natural Iteration Method), which is used for the minimization in the configurational case. The Debye-Grüneisen approximation has been adapted, with elastical considerations, for multicomponent systems (i.e., alloys). The method is based on Anderson model, when ab initio elastic constants are available, or on Moruzzi-Janak-Schwarz model otherwise. In ab initio calculations it is possible to determine the elastic constants for each structure considered. Using these data, Debye temperature and bulk modulus at 0K are determined with greater accuracy. First-principles cohesion/formation energies in function of volume for the b.c.c. Fe-Al (body-centered cubic iron-aluminum) system were used as an example to derive parameters to the model.
|
Page generated in 0.094 seconds