1 |
A study of the vertical component of ocean floor vibrations in two geographical chokepointsHankins, Jeremy R. 03 1900 (has links)
Reissued 30 May 2017 with Second Reader’s non-NPS affiliation added to title page. / Approved for public release; distribution is unlimited / The purpose of this thesis is to characterize typical levels of vibrational noise on the ocean floor to ascertain the vibration's effect on possible future bottom mounted sensors. The data used for this thesis was obtained from publicly available recorded information from four ocean bottom seismometers (OBS). The OBSs were located in two geographical choke points: the Luzon Strait and west of the Strait of Juan de Fuca. These highly trafficked choke points were considered to be a good representation of where these experimental bottom mounted sensors might be located should they be built. Unix-based seismic processing software available from the Incorporated Research Institutions for Seismology (IRIS) proved essential to obtaining calibrated data, and the methodology used to get the calibrated data is discussed in detail. The results showed that one OBS out of the four was highly variable, with decibel levels varying widely from day to day. The other OBSs remained fairly consistent. In addition, there were no common discrete frequencies between sensors that were in the same geographic area. Recommended future research involves the study of environmental effects on the OBSs, additional research to correlate the results observed in the Luzon Strait, and a look into the electronic noise floors of the OBSs used. / Lieutenant Commander, United States Navy
|
2 |
An Integration Setup if the in-situ Mass and Spectroscopic Analysis for Volatile Liquids or SolidsJones, Kolton K 01 April 2018 (has links)
To help address the growing need for more and better sensors, an attempt was made to produce an in-situ mass and spectroscopic analysis of liquid and solid samples, to characterize samples and sensors. Spectroscopic analysis consisted of Raman and FTIR where mass measurements were carried out. The sample or sensor’s holder would allow for spectroscopic analysis as well as expose the sample to high temperatures and various chemicals. While Raman and FTIR were successful in producing reliable and consistent data, the constructed watt balance was not. This failure was a result of eliminate vibrational noise.
|
Page generated in 0.1115 seconds