• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Viral Fusion Protein TM-TM Interactions: Modulators of Protein Function and Potential Antiviral Targets

Webb, Stacy 01 January 2017 (has links)
Enveloped viruses, such as HIV, influenza, and Ebola, utilize surface glycoproteins to bind and fuse with a target cell membrane. This fusion event is necessary for release of viral genomic material so the virus can ultimately reproduce and spread. The recently emerged Hendra virus (HeV) is a negative-sense, single-stranded RNA paramyxovirus that presents a considerable threat to human health as there are currently no human vaccines or antivirals available. The HeV utilizes two surface glycoproteins, the fusion protein (F) and the attachment protein (G), to drive membrane fusion. Through this process, the F protein undergoes an irreversible conformational change, transitioning from a meta-stable pre-fusion conformation to a more thermodynamically stable post-fusion structure. Understanding the elements which control stability of the pre-fusion state and triggering to the post-fusion conformation is important for understanding F protein function. Studies that replace or mutate the TM domain of the F protein of several viruses implicated the TM domain in the fusion process, but the structural and molecular details in fusion remain unclear. Previously, analytical ultracentrifugation was used to demonstrate that isolated TM domains of HeV F protein associate in a monomer-trimer equilibrium. To determine factors driving this association, we analyzed the sequence of several paramyxovirus F protein TM domains and found a heptad repeat of β-branched residues. Analysis of the HeV F TM domain specifically revealed a heptad repeat leucine-isoleucine zipper motif (LIZ). Replacement of the LIZ with alanine resulted in dramatically reduced TM-TM association. Mutation of the LIZ in the whole protein resulted in decreased protein expression and pre-fusion conformation. To further understand the role of the TM domain, the TM domain was targeted as a potential modulator of F protein stability and function. Exogenous HeV F TM constructs were co-expressed with the full length F protein in Vero cells to analyze the effects on protein expression. Co-expression of the exogenous HeV F TM constructs dramatically reduced the expression of HeV F. However, the co-expression of exogenous HeV F TM constructs with a different paramyxovirus F protein, PIV5 F, did not strongly affect PIV5 F expression levels, suggesting that the interaction of the exogenous TM constructs is specific. Fusion assays revealed that HeV F TM constructs dramatically reduced HeV F, but not PIV5 F fusion activity. We hypothesize that the short exogenous HeV TM constructs associate with the TM domain from full-length HeV F, resulting in pre-mature triggering or protein misfolding. The work presented here demonstrates that specific elements in the TM domain contribute to TM association and pre-fusion protein stability. Furthermore, targeting these interactions may be a viable approach for antiviral development against this important pathogen.
2

Fusion activation in murine leukemia virus /

Wallin, Michael, January 2006 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2006. / Härtill 4 uppsatser.
3

Newcastle Disease Virus Virulence: Mechanism of the Interferon Antagonistic Activity of the V Protein and Characterization of a Putative Virulence-Specific Antibody to the Attachment Protein: a dissertation

Alamares, Judith G. 05 May 2008 (has links)
Newcastle disease virus (NDV) is a member of the genus Avulavirus of the Paramyxoviridaefamily of enveloped negative-stranded RNA viruses. The virus causes respiratory, neurological, or enteric disease in many species of birds, resulting in significant losses to the poultry industry worldwide. Strains of the virus are classified into three pathotypes based on the severity of disease in chickens. Avirulent strains that produce mild or asymptomatic infections are termed lentogenic, whereas virulent strains are termed velogenic. Strains of intermediate virulence are termed mesogenic. The envelope of NDV virions contains two types of glycoproteins, the hemagglutinin-neuraminidase (HN) and fusion (F) proteins. HN mediates three functions: 1) virus attachment to sialic acid-containing receptors; 2) neuraminidase activity that cleaves sialic acid from progeny virions to prevent self-aggregation; and, 3) complementation of the F protein in the promotion of fusion. Though it is widely accepted that cleavage of a fusion protein precursor is the primary determinant of NDV virulence, it is not the sole determinant. At least two other proteins, HN and the V protein, contribute to virulence. The V protein possesses interferon (IFN) antagonistic activity. The long-range goal of these studies is to understand the roles of HN and V in the differential virulence patterns exhibited by members of the NDV serotype. The first aim is to compare the IFN antagonistic activity of the V protein from a lentogenic and a mesogenic strain of the virus. The results of this study demonstrate that the V protein of the mesogenic strain Beaudette C (BC) exhibits greater IFN antagonistic activity than that of the lentogenic strain La Sota. Hence, the IFN antagonistic activities of the two V proteins correlate with their known virulence properties. Comparison of the C-terminal regions of La Sota and BC V proteins revealed four amino acid differences. The results demonstrate that the IFN antagonistic activity of La Sota V increases when any one of these residues is mutated to the corresponding residue in BC V. Conversely, the IFN antagonistic activity of BC V decreases when any one of these four residues is mutated to the corresponding residue in La Sota V. However, no single residue accounts for the difference in IFN antagonistic activity between the two V proteins. Also, analysis of La Sota V and BC V proteins with multiple mutations in these positions revealed that the four residues are collectively responsible for the difference in the IFN antagonistic activity of the two V proteins. Finally, characterization of chimeric La Sota/BC V proteins showed that the N-terminal region also contributes to the IFN antagonistic activity of V. Contrary to an earlier report, results described here demonstrate that the NDV V protein does not target STAT1 for degradation. However, both La Sota and BC V proteins target interferon regulatory factor (IRF)-7 for degradation and promote the conversion of full-length IRF-7 to a lower molecular weight form (IRF-7*). This is the first demonstration that IRF-7 is targeted by a paramyxovirus V protein. The amount of IRF-7* decreases in a dose-dependent manner in the presence of a proteasome inhibitor, suggesting that IRF-7* is a degradation product of IRF-7. Furthermore, the BC V protein promotes complete conversion of IRF-7 to IRF7*, whereas the La Sota V protein does so less efficiently. Again, this is consistent with the difference in IFN antagonistic activity of the two V proteins, and in turn, with their virulence. The second aim is to characterize an HN-specific monoclonal antibody called AVS-I. A previous study suggested that AVS-I recognizes an epitope that is conserved in lentogenic strains and raises the possibility that this epitope may colocalize with a determinant of virulence in HN. To further characterize antibody AVS-I and the epitope it recognizes, we (i) determined its specificity for several additional strains of the virus, (ii) mapped its binding to HN in competition with our own antibodies, (iii) determined its functional inhibition profile, and (iv) isolated and sequenced an AVS-I escape mutant. The results demonstrate that AVS-I binds to a conformational epitope at the carboxy terminus of HN. This suggests that this region of HN may define a determinant of virulence. However, it was also shown that AVS-I, which was previously thought to be specific for avirulent strains of NDV, actually recognizes individual mesogenic and velogenic strains. In conclusion, the data presented in this dissertation contributes to a greater understanding of the molecular basis for NDV virulence and may aid in development of antiviral strategies and generation of recombinant NDVs suitable for use in cancer and gene therapy.

Page generated in 0.0938 seconds