1 |
Influenza neuraminidase assembly : Evolution of domain cooperativityda Silveira Vieira da Silva, Diogo January 2016 (has links)
Influenza A virus (IAV) is one of the most common viruses circulating in the human population and is responsible for seasonal epidemics that affect millions of individuals worldwide. The need to develop new drugs and vaccines against IAVs led scientists to study the main IAV surface antigens hemagglutinin (HA) and neuraminidase (NA). In contrast to HA, which facilitates cell binding and entry of IAVs, NA plays a critical role in the release and spreading of the viral particles. The aim of this thesis was to study how the enzymatic head domain, the stalk and transmembrane domains have evolved to facilitate NA assembly into an enzymatically active homotetramer, and to determine how these regions have evolved together over time. Initially, we observed that the NA transmembrane domain (TMD) assists in the assembly of the head domain by tethering the stalk to the membrane in a tetrameric conformation. Upon examination of the available sequences for NA, we found that the subtype 1 (N1) TMDs have become more polar since 1918 while the subtype 2 (N2) TMDs have consistently retained the expected hydrophobicity of a TMD. Further analysis of the amino-acid sequences revealed a characteristic indicative of an amphipathic assembly for the N1 TMDs that were absent in the TMDs from N2. The function of the amphipathic assembly was examined by creating two viral chimeras, where the original TMD was replaced by another more polar or an engineered hydrophobic TMD. In both cases the viruses carrying the NA TMD chimeras showed reduced growth indicating that the TMD changes created an incompatibility with the head domain of NA. After prolonged passaging of these viruses, natural occurring mutations were observed in the TMD that were able to rescue the defects in viral growth, head domain folding and budding by creating a TMD with the appropriate polar or hydrophobic assembly properties. Interestingly, we observed that N1 and N2 have a great difference in the localization and length of amino-acid deletions occurring in the stalk region. In line with this observation, our data suggests that N1 supports large stalk deletions due to its strong TMD association, whereas N2 requires the presence of a strong oligomerizing stalk region to compensate for its weak TMD interaction. These results have demonstrated how important the NA TMD is for viral infectivity and how the three different domains have evolved in a cooperative manner to promote proper NA assembly / Influensa är en av de mest smittsamma sjukdomarna som drabbar människor och de flesta kan räkna med att bli infekterade många gånger under sin livstid. Influensaviruset attackerar främst luftvägarna, men kan även leda till t.ex. lunginflammation. De enskilda viruspartiklarna (virionerna) kan komma i olika former, men den vanligaste formen som används för att beskriva viruset är den sfäriska. På en virions yta så finns det två olika typer av membranproteiner, som kan liknas med två olika sorters spikar som sticker ut från viruset. Den ena ”spiken” kallas neuraminidas, eller bara kort för NA, och den andra för hemagglutinin (HA). När man har andats in ett influensavirus så kan viruset ta sig till de övre luftvägarna och vidare ner i luftstrupen för att där använda sig av HA för att ta sig in i en cell. Viruset använder sig sedan av cellen för att skapa många nya virioner, som tar sig ut ur cellen för att infektera fler celler. NA är det protein som virionerna använder sig av för att klyva sig loss från modercellen. Målet för avhandlingen var att studera NA och beskriva hur proteinet måste vara ihopsatt för att vara aktivt. NA har en uppbyggnad liknande en trädklunga, där fyra stycken identiska träd (med tillhörande rötter, stammar och trädkronor) går ihop och bildar en enda aktiv enhet, en s.k. tetramer. ”Rötterna” hos NA är den transmembrana domänen (TMD), den del av proteinet som sitter fast i influenaviruskroppen. ”Stammen”, eller stjälkdelen av NA, binder samman TMD med den största delen, huvuddomänen som motsvarar ”trädkronan”. Det är just huvuddomänen som är ansvarig för att klyva loss viruspartiklar från en modercell. Vi har i våra studier sett att det kan vara väldigt viktigt att TMD-domänerna går ihop i grupper om fyra för att hela NA ska kunna gå ihop i en tetramer och aktivt kunna klyva loss viruspartiklarna. När vi studerade TMD från olika influensavirus så märkte vi att vissa egenskaper hos TMD krävs för att de skulle kunna gå ihop, men också att dessa egenskaper inte fanns hos alla influensavirus. Virusen har evolverat över lång tid och har anpassat sig efter värdorganismerna (inklusive människan) och har hittat olika lösningar på problemet med att behöva bilda en tetramer. När vi gjorde ändringar i en TMD som vanligtvis gick ihop till en tetramer, och därmed förhindrade detta, så noterade vi att huvuddomänens funktion påverkades vilket ledde till att influensaviruset hade svårt att spridas. Vidare så har våra pågående studier på stjälkdelen visat att även denna del kan ha stor betydelse för tetrameriseringen av NA, speciellt i de fall där TM-domänen saknar egenskaper för att gå ihop. Avhandlingen tillför inte bara ny och viktig information till influensaforskningen, utan även potentiellt för framställandet av nya influensavacciner/-mediciner. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Manuscript.</p>
|
2 |
COARSE-GRAINED SIMULATIONS OF TRANSMEMBRANE DOMAIN INTERACTIONS IN SEMAPHROIN-PLEXIN-NEUROPILIN SIGNAL SYSTEMMeng, Zhiyuan 28 August 2019 (has links)
No description available.
|
3 |
Viral Fusion Protein TM-TM Interactions: Modulators of Protein Function and Potential Antiviral TargetsWebb, Stacy 01 January 2017 (has links)
Enveloped viruses, such as HIV, influenza, and Ebola, utilize surface glycoproteins to bind and fuse with a target cell membrane. This fusion event is necessary for release of viral genomic material so the virus can ultimately reproduce and spread. The recently emerged Hendra virus (HeV) is a negative-sense, single-stranded RNA paramyxovirus that presents a considerable threat to human health as there are currently no human vaccines or antivirals available. The HeV utilizes two surface glycoproteins, the fusion protein (F) and the attachment protein (G), to drive membrane fusion. Through this process, the F protein undergoes an irreversible conformational change, transitioning from a meta-stable pre-fusion conformation to a more thermodynamically stable post-fusion structure. Understanding the elements which control stability of the pre-fusion state and triggering to the post-fusion conformation is important for understanding F protein function. Studies that replace or mutate the TM domain of the F protein of several viruses implicated the TM domain in the fusion process, but the structural and molecular details in fusion remain unclear. Previously, analytical ultracentrifugation was used to demonstrate that isolated TM domains of HeV F protein associate in a monomer-trimer equilibrium. To determine factors driving this association, we analyzed the sequence of several paramyxovirus F protein TM domains and found a heptad repeat of β-branched residues. Analysis of the HeV F TM domain specifically revealed a heptad repeat leucine-isoleucine zipper motif (LIZ). Replacement of the LIZ with alanine resulted in dramatically reduced TM-TM association. Mutation of the LIZ in the whole protein resulted in decreased protein expression and pre-fusion conformation. To further understand the role of the TM domain, the TM domain was targeted as a potential modulator of F protein stability and function. Exogenous HeV F TM constructs were co-expressed with the full length F protein in Vero cells to analyze the effects on protein expression. Co-expression of the exogenous HeV F TM constructs dramatically reduced the expression of HeV F. However, the co-expression of exogenous HeV F TM constructs with a different paramyxovirus F protein, PIV5 F, did not strongly affect PIV5 F expression levels, suggesting that the interaction of the exogenous TM constructs is specific. Fusion assays revealed that HeV F TM constructs dramatically reduced HeV F, but not PIV5 F fusion activity. We hypothesize that the short exogenous HeV TM constructs associate with the TM domain from full-length HeV F, resulting in pre-mature triggering or protein misfolding. The work presented here demonstrates that specific elements in the TM domain contribute to TM association and pre-fusion protein stability. Furthermore, targeting these interactions may be a viable approach for antiviral development against this important pathogen.
|
4 |
Investigating the Roles of a Putative Transmembrane Domain of Mammalian Diacylglycerol Kinase EpsilonDicu, Armela Ovidia 06 1900 (has links)
<p> An area of current research interest involves the diacylglycerol kinase (DGK) family. Diacylglycerol kinases (DGKs) are a group of enzymes that phosphorylate diacylglycerol (DAG), a second messenger involved in cell signaling. The product of this reaction, phosphatidic acid (PA), also has signaling roles. An interesting isoform is DGKε, that although it has no identifiable regulatory domains other than the C1 domains. In addition, the catalytic domain is homologous to that of other DGK isoforms; however, DGKε exhibits an unusual specificity toward acyl chains of DAG, selectively phosphorylating an arachidonoyl-DAG substituted at the sn-2 position. Recently, researchers have identified an N-terminal hydrophobic domain of about 19 amino-acids in human DGKε. The present study attempted to identify the function of the N-terminal putative transmembrane domain of human DGKε and its relationship to the activity and substrate specificity of this enzyme by designing a truncated form of DGKε lacking the putative transmembrane domain.</p> <p> We have shown that the putative transmembrane domain of DGKε is not required for enzyme activity or for substrate specificity. In a mixed micellar assay the enzyme-catalyzed reaction followed surface dilution kinetics with respect to diacylglycerol and followed Michaelis-Menten kinetics with respect to ATP. The results show that the truncated form of the enzyme maintains substrate specificity for lipids with an arachidonoyl moiety present at the sn-2 position. The truncation increased the catalytic rate constant for all three substrates used in this study.
It appears unlikely that the putative transmembrane domain, a segment unique to DGKε, has no functional role. It is possible that the hydrophobic segment may have a role in enzyme regulation by associating the enzyme in oligomers that are inactive in quiescent cells and get activated upon dissociation into monomers by increased levels of DAG in the membrane. We have shown that the presence of higher molecular species in the gel is not dependent on the presence or absence of the putative transmembrane domain. The only difference between the full-length and truncated enzyme is the monomer to dimer ratio. It appears likely that another segment of DGKε besides the putative transmembrane domain may be involved in oligomerization and that oligomerization is either transient or very weak. The absence of the hydrophobic domain of DGKε seems to cause no drastic changes either in the activity, the substrate specificity, or the state of oligomerization of the enzyme.</p> <p> Therefore, the next question is whether the hydrophobic domain of DGKε inserts itself in the membrane as a transmembrane helix or it only helps associate the enzyme to the surface of the membrane. We studied the topology of theN-terminal domain of DGKε in intact and permeabilized cells by indirect immunofluorescent microscopy. The results show that the N-terminal domain of the protein is present in the cytosol. The data supports a model in which the hydrophobic domain of DGKε forms a hydrophobic loop that attaches to the inner layer of the plasma membrane or that the hydrophobic domain attaches to the inner leaflet through its nonpolar surface of a horizontal helix. The first hypothesis is supported by the presence of a Pro residue in the middle of the hydrophobic domain. This Pro would introduce a kink in the helix creating a loop, but the absence of one or more glycine residues proximal to proline may hinder the formation of the loop. The second hypothesis is sustained by the presence of a polar surface
on one side of the helical wheel. This orientation indicates the presence of a slightly horizontal
helix attached to the surface of the inner layer of the plasma membrane.</p> <p> Regardless of the orientation of the helix, the weak association of the enzyme with the membrane is supported by previous data on the ease of extractability of the enzyme with high salts and on the Triton X-114 phase partitioning.</p> / Thesis / Master of Science (MSc)
|
5 |
Studies on the transmembrane signaling of β1 integrinsArmulik, Annika January 2000 (has links)
<p>Integrins are heterodimeric cell surface receptors, composed of an α and a β subunit, mainly binding for extracellular matrix proteins. lntegrin subunit β1 can combine with at least 12 a subunits and thus form the biggest subfamily within the integrin family. In this thesis, functional properties of the splice variant β1Β, and the effects of several mutations in the cytoplasmic tail of integrin subunit β1Α were studied. In addition, the border between the transmembrane and cytoplasmic domains of several integrin subunits was determined.</p><p>The β1Β splice variant has been reported to have a dominant negative effect on functions of β1Α integrins. In this study, it was studied if the expression of β1Β had similar negative effects on the αvβ3 integrin functions since the β3 subunit is structurally similar to β1Α. The β1Β subunit was expressed in an integrin β1-deficient cell line and it was found that the presence of β1Β does not interfere with adhesion or signaling of endogenous αvβ3</p><p>The border between the cytoplasmic domain and the C-terminal end of the transmembrane domain of integrin α and β subunits has been unclear. This question was experimentally addressed for integrin subunits β1, β2, α2 and α5. It was found that integrin subunits contain a positively charged lysine, which is embedded in the membrane in the absence of interacting proteins.</p><p>The functional importance of the lysine in integrin transmembrane domains was investigated by mutating this amino acid to leucine in β1Α. The mutation affected cell spreading and tyrosine phosphorylation of the adapter protein CAS. The activation of focal adhesion kinase and tyrosine phosphorylation of paxillin was not affected. Furthermore, the mutation of two tyrosines to phenylalanines in the β1Α cytoplasmic tail was found to reduce the capability of β1Α integrins to mediate cell spreading and migration. Activation of focal adhesion kinase in response to the later β1Α mutant was shown to be impaired as well as tyrosine phosphorylation of adapter proteins paxillin and tensin whereas overall tyrosine phosphorylation of CAS was unaffected. These data suggests the presence of focal adhesion kinase-dependent and -independent pathways for tyrosine phosphorylation of CAS after integrin β1Α-mediated adhesion. </p>
|
6 |
Mechanisms of Integrin Signal TransductionStefansson, Anne January 2007 (has links)
<p>Integrins are a protein family of cell surface receptors, expressed in all cell types in the human body, except the red blood cells. Besides their importance in mediating physical connections with the surrounding environment, the integrin family members are also vital signalling mediators. They have no intrinsic kinase activity; instead the signals are transduced through conformational changes. </p><p>In this thesis, work is presented which is focused on molecular mechanisms of integrin signal transduction. The signal transduction was first studied from a structural point of view, determining the transmembrane domain borders of a few selected integrin family members and ruling out a signalling model involving a “piston-like” movement. </p><p>Then, downstream signalling events involved in the beta1 integrin-induced activation of Akt via the PI3kinase family were characterized. Our results identify a novel pathway for PI3K/Akt activation by beta1 integrins, which is independent of focal adhesion kinase (FAK), Src and EGF receptor. Furthermore, both beta1 integrins and EGF receptors induced phosphorylation of Akt at the regulatory sites Thr308 and Ser473, but only EGF receptor stimulation induced tyrosine phosphorylation of Akt.</p><p>Finally, signals from beta1 integrins underlying the morphologic changes during cell spreading were studied. A rapid integrin-induced cell spreading dependent on actin polymerisation was observed by using total internal reflection fluorescence (TIRF) microscopy. This integrin-induced actin polymerisation was shown to be dependent on PI3K p110alpha catalytic subunit and to involve the conserved Lys756 in the beta1-integrin membrane proximal part.</p>
|
7 |
Studies on the transmembrane signaling of β1 integrinsArmulik, Annika January 2000 (has links)
Integrins are heterodimeric cell surface receptors, composed of an α and a β subunit, mainly binding for extracellular matrix proteins. lntegrin subunit β1 can combine with at least 12 a subunits and thus form the biggest subfamily within the integrin family. In this thesis, functional properties of the splice variant β1Β, and the effects of several mutations in the cytoplasmic tail of integrin subunit β1Α were studied. In addition, the border between the transmembrane and cytoplasmic domains of several integrin subunits was determined. The β1Β splice variant has been reported to have a dominant negative effect on functions of β1Α integrins. In this study, it was studied if the expression of β1Β had similar negative effects on the αvβ3 integrin functions since the β3 subunit is structurally similar to β1Α. The β1Β subunit was expressed in an integrin β1-deficient cell line and it was found that the presence of β1Β does not interfere with adhesion or signaling of endogenous αvβ3 The border between the cytoplasmic domain and the C-terminal end of the transmembrane domain of integrin α and β subunits has been unclear. This question was experimentally addressed for integrin subunits β1, β2, α2 and α5. It was found that integrin subunits contain a positively charged lysine, which is embedded in the membrane in the absence of interacting proteins. The functional importance of the lysine in integrin transmembrane domains was investigated by mutating this amino acid to leucine in β1Α. The mutation affected cell spreading and tyrosine phosphorylation of the adapter protein CAS. The activation of focal adhesion kinase and tyrosine phosphorylation of paxillin was not affected. Furthermore, the mutation of two tyrosines to phenylalanines in the β1Α cytoplasmic tail was found to reduce the capability of β1Α integrins to mediate cell spreading and migration. Activation of focal adhesion kinase in response to the later β1Α mutant was shown to be impaired as well as tyrosine phosphorylation of adapter proteins paxillin and tensin whereas overall tyrosine phosphorylation of CAS was unaffected. These data suggests the presence of focal adhesion kinase-dependent and -independent pathways for tyrosine phosphorylation of CAS after integrin β1Α-mediated adhesion.
|
8 |
Mechanisms of Integrin Signal TransductionStefansson, Anne January 2007 (has links)
Integrins are a protein family of cell surface receptors, expressed in all cell types in the human body, except the red blood cells. Besides their importance in mediating physical connections with the surrounding environment, the integrin family members are also vital signalling mediators. They have no intrinsic kinase activity; instead the signals are transduced through conformational changes. In this thesis, work is presented which is focused on molecular mechanisms of integrin signal transduction. The signal transduction was first studied from a structural point of view, determining the transmembrane domain borders of a few selected integrin family members and ruling out a signalling model involving a “piston-like” movement. Then, downstream signalling events involved in the beta1 integrin-induced activation of Akt via the PI3kinase family were characterized. Our results identify a novel pathway for PI3K/Akt activation by beta1 integrins, which is independent of focal adhesion kinase (FAK), Src and EGF receptor. Furthermore, both beta1 integrins and EGF receptors induced phosphorylation of Akt at the regulatory sites Thr308 and Ser473, but only EGF receptor stimulation induced tyrosine phosphorylation of Akt. Finally, signals from beta1 integrins underlying the morphologic changes during cell spreading were studied. A rapid integrin-induced cell spreading dependent on actin polymerisation was observed by using total internal reflection fluorescence (TIRF) microscopy. This integrin-induced actin polymerisation was shown to be dependent on PI3K p110alpha catalytic subunit and to involve the conserved Lys756 in the beta1-integrin membrane proximal part.
|
9 |
Structural Studies of the Transmembrane and Membrane Proximal Domains of HIV-1 gp41 by X-Ray CrystallographyJanuary 2014 (has links)
abstract: The transmembrane subunit (gp41) of the envelope glycoprotein of HIV-1 associates noncovalently with the surface subunit (gp120) and together they play essential roles in viral mucosal transmission and infection of target cells. The membrane proximal region (MPR, residues 649-683) of gp41 is highly conserved and contains epitopes of broadly neutralizing antibodies. The transmembrane (TM) domain (residues 684-705) of gp41 not only anchors the envelope glycoprotein complex in the viral membrane but also dynamically affects the interactions of the MPR with the membrane. While high-resolution X-ray structures of some segments of the MPR were solved in the past, they represent the pre-fusion and post-fusion conformations, most of which could not react with the broadly neutralizing antibodies 2F5 and 4E10. Structural information on the TM domain of gp41 is scant and at low resolution.
This thesis describes the structural studies of MPR-TM (residues 649-705) of HIV-1 gp41 by X-ray crystallography. MPR-TM was fused with different fusion proteins to improve the membrane protein overexpression. The expression level of MPR-TM was improved by fusion to the C-terminus of the Mistic protein, yielding ∼1 mg of pure MPR-TM protein per liter cell culture. The fusion partner Mistic was removed for final crystallization. The isolated MPR-TM protein was biophysically characterized and is a monodisperse candidate for crystallization. However, no crystal with diffraction quality was obtained even after extensive crystallization screens. A novel construct was designed to overexpress MPR-TM as a maltose binding protein (MBP) fusion. About 60 mg of MBP/MPR-TM recombinant protein was obtained from 1 liter of cell culture. Crystals of MBP/MPR-TM recombinant protein could not be obtained when MBP and MPR-TM were separated by a 42 amino acid (aa)-long linker but were obtained after changing the linker to three alanine residues. The crystals diffracted to 2.5 Å after crystallization optimization. Further analysis of the diffraction data indicated that the crystals are twinned. The final structure demonstrated that MBP crystallized as a dimer of trimers, but the electron density did not extend beyond the linker region. We determined by SDS-PAGE and MALDI-TOF MS that the crystals contained MBP only. The MPR-TM of gp41 might be cleaved during or after the process of crystallization. Comparison of the MBP trimer reported here with published trimeric MBP fusion structures indicated that MBP might form such a trimeric conformation under the effect of MPR-TM. / Dissertation/Thesis / Doctoral Dissertation Chemistry 2014
|
10 |
The quality control of transmembrane domains along the secretory pathwayBriant, Kit January 2015 (has links)
Protein quality control is crucial to maintaining cellular function. A failure to clear misfolded, aggregation prone proteins can lead to the accumulation of toxic protein aggregates that interfere with cellular pathways and lead to cell death. In addition, the degradation of partially functional proteins can lead to loss of function diseases. Understanding proteins quality control mechanisms is therefore of fundamental importance to understanding these disease pathways. Systems that operate to monitor the structure of soluble protein domains are now relatively well understood. However, in addition to soluble domains, membrane proteins contain regions that span lipid bilayers, and a key question that remains is where and how these transmembrane domains (TMDs) that fail to assemble correctly or are otherwise aberrant are recognised within subcellular compartments. As such, in this study model chimeric proteins containing the luminal and cytoplasmic domain of the single-spanning membrane protein CD8 and exogenous TMDs derived from polytopic membrane proteins were used to investigate the handling of non-native TMDs in the secretory pathway. CD8 chimeras containing non-native TMDs were found to be recognised by endoplasmic reticulum (ER) quality control pathways. Importantly, ER-associated degradation of CD8 chimeras containing exogenous TMDs was reliant upon ubiquitination of cytoplasmic lysine residues prior to retrotranslocation and dislocation from the ER membrane. In contrast, CD8 containing the endogenous TMD but a misfolded luminal domain could be efficiently degraded when cytoplasmic lysines were removed, suggesting that the retrotranslocation mechanisms for these proteins are distinct and defined by the domain which is misfolded. A proportion of the CD8 chimeras containing non-native TMDs were able to exit the ER, and were retrieved to the ER from the Golgi. Golgi-to-ER retrieval was found to be at least partially mediated by Rer1. CD8 chimeras that escaped ER retrieval could also be retained in the Golgi and subsequently degraded in lysosomes, indicating the presence of an as yet undefined TMD-based Golgi quality control checkpoint in mammalian cells. Furthermore, in contrast to WT CD8 which was stable at the plasma membrane, CD8 chimeras containing non-native TMDs that trafficked to the cell surface were rapidly internalised and sorted to lysosomes. This process was largely independent of the cytoplasmic domain of CD8, suggesting signals within the TMD induced internalisation of these CD8 chimeras. The proportion of the CD8 chimeras that trafficked to the plasma membrane, and the stability of the protein at the cell surface, was dependent upon the presence of polar residues within the TMDs, indicating that exposed polar residues in non-native TMDs may alter the handling of proteins at the Golgi and cell surface. Together, these results further our understanding of the mechanisms by which proteins containing aberrant transmembrane domains are handled at multiple subcellular compartments.
|
Page generated in 0.0933 seconds