11 |
Cross-talk between the TonB and TolA Energy Transduction Systems in Escherichia coliSouth, Timothy E. 23 October 2009 (has links)
No description available.
|
12 |
Structural Elements that Regulate Interactions between the Extracellular and Transmembrane Domains of Human Nucleoside Triphosphate Diphosphohydrolase 3Gaddie, Keith J. January 2009 (has links)
No description available.
|
13 |
Elucidation of Membrane Protein Interactions Under Native and Ligand Stimulated Conditions Using Fluorescence Correlation SpectroscopyChristie, Shaun Michael 25 August 2020 (has links)
No description available.
|
14 |
NA transmembrane domain : Amphiphilic drift to accommodate two functionsNordholm, Johan January 2017 (has links)
Neuraminidase (NA) is one of two major antigens on the surface of influenza A viruses. It is comprised of a single N-terminal transmembrane domain (TMD), a stalk domain, and a C-terminal enzymatic head domain that cleaves sialic acid, most notably to release new particles from the host cell surface. NA is only enzymatically active as a homo-tetramer. However, it is not known which properties facilitate the oligomerization of NA during assembly. Our results show that, apart from anchoring the protein to the membrane, the NA TMD also contributes to the assembly process by keeping the stalk in a tetrameric conformation. The ability of the TMD to oligomerize is shown to be dependent on its amphiphilic characteristics that was largely conserved across the nine NA subtypes (N1-N9). Over time the NA TMDs in human H1N1 viruses were found to have become more amphiphilic, which correlated with stronger oligomerization. An old H1N1 virus with a more recent N1 TMD had impaired growth, but readily acquired compensatory mutations in the TMD to restore growth, by reverting the TMD oligomerization strength back to that of the old TMD, demonstrating a biological role of the TMD in folding and assembly. NA and the other viral proteins are spatially and temporally coordinated to achieve optimal viral production. By using a co-transfection analysis, the high AU-content in the NA and HA ER-targeting sequence coding regions (for NA TMD as well as the HA signal sequence) were found to inhibit their expression. The inhibition was alleviated by the early expressed influenza RNA-binding protein NS1, which promoted translation and showed enriched foci at the endoplasmic reticulum (ER). NS1, which expresses early during infection, is therefore likely the regulator of NA and HA to prevent premature expression. These results show that the NA TMD is under substantial selection pressure at both the nucleotide and amino acid level to accommodate its roles in ER-targeting, protein folding, and post-transcriptional regulation. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Accepted.</p>
|
15 |
Caractérisation de la sous-unité bêta du translocon chez la levure Schizosaccharomyces pombeLeroux, Alexandre 12 1900 (has links)
La sécrétion des protéines est un processus essentiel à la vie. Chez les eucaryotes, les protéines sécrétées transitent dans le réticulum endoplasmique par le pore de translocation. Le translocon est composé de trois sous-unités fondamentales nommées Sec61α, β et γ chez les mammifères, ou Sec61p, Sbh1p et Sss1p chez les levures. Tandis que le rôle des sous-unités α et γ est bien connu, celui de la sous-unité β demeure énigmatique. Plusieurs phénotypes distincts sont associés à cette protéine dans différents organismes, mais le haut niveau de conservation de séquence suggère plutôt une fonction universelle conservée. Récemment, Feng et al. (2007) ont montré que le domaine transmembranaire (TMD) de Sbh1p était suffisant pour complémenter plusieurs phénotypes associés à la délétion du gène chez Saccharomyces cerevisiae, suggérant un rôle important de cette région. L’objectif de mon projet de recherche consiste à étudier la fonction biologique de la sous-unité β du translocon et de son TMD chez Schizosaccharomyces pombe. Dans cette levure, j’ai découvert que le gène sbh1+ n’était pas essentiel à la viabilité à 30oC, mais qu’il était requis pour la croissance à basse température. La délétion de sbh1+ entraîne une sensibilité aux stress de la paroi cellulaire et une diminution de la sécrétion des protéines à 23oC. La surexpression de Sbh1p diminue elle aussi la sécrétion des protéines et altère la morphologie cellulaire. Ces phénotypes sont distincts de ceux observés chez S. cerevisiae, où la délétion des deux paralogues de Sec61β entraîne une sensibilité à haute température plutôt qu’à basse température. Malgré cela, les homologues de Sec61β de S. pombe et de S. cerevisiae sont tout deux capables de complémenter la thermosensibilité respective de chaque levure. La complémentation est possible même avec l’homologue humain de Sec61β, indiquant la conservation d’une fonction de Sec61β de la levure à l’homme. Remarquablement, le TMD de Sec61β de S. pombe, de S. cerevisiae et de l’humain sont suffisants pour complémenter la délétion génomique autant chez la levure à fission que chez la levure à bourgeons. Globalement, ces observations indiquent que le TMD de Sec61β exerce une fonction cellulaire conservée à travers les espèces. / Protein secretion is an essential biological process. In eukaryotes, secreted proteins transit into the endoplasmic reticulum through the translocon pore. The core of the translocation channel is composed of three subunits called Sec61α, β and γ in mammals, or Sec61p, Sbh1p and Sss1p in yeasts. While the role of the α and γ subunit is well understood, the function of the β subunit remains ill-defined. Although numerous species-specific phenotypes have been reported for this protein, the striking sequence conservation among species argue in favour of a universal role. Recently, Feng et al. (2007) reported the surprising finding that the transmembrane domain (TMD) of Sbh1p was sufficient to complement different functions of the entire protein in Saccharomyces cerevisiae, suggesting an important role for this region. The aim of my project was to explore the biological function of the translocon β subunit and its TMD in Schizosaccharomyces pombe. In this yeast, we found that the sbh1+ gene is unessential for viability at 30oC, but is required for growth at low temperature. Knockout of sbh1+ results in sensitivity to cell-wall stress and reduced protein secretion at 23oC. Overexpression of Sbh1p also diminishes protein secretion and results in an elongated cell shape. These phenotypes contrast with those observed S. cerevisiae, as deletion of both Sec61β paralogs in this yeast results in heat sensitivity instead of cold sensitivity. Nevertheless, Sec61β homologs from both S. pombe and S. cerevisiae complement the respective temperature sensitivity of either yeast. This functional complementation can also be accomplished by the human homolog of the translocon β subunit, indicating that a fundamental function of Sec61β is conserved from yeast to human. Remarkably, the TMD of Sec61β homologs from S. pombe, S. cerevisiae and human are sufficient to complement the gene knockout in both fission and budding yeasts. Together, these observations indicate that the TMD of Sec61β exerts a cellular function that is conserved across species.
|
16 |
Strukturní determinanty regulace povrchového transportu NMDA receptorů v savčích buňkách / Structural determinants of regulation of surface delivery of NMDA receptors in mammalian cellsDanačíková, Šárka January 2018 (has links)
N-methyl-D-aspartate (NMDA) receptors are ligand-gated ion channels activated by agonist glutamate and co-agonist glycine. They play a key role in mediating the fast excitatory synaptic neurotransmission in the mammalian central nervous system. To create a functional heterotetrameric receptor, the presence of two GluN1 subunits combined with GluN2 or GluN3 subunits is necessary. Previous studies confirmed the importance of M3 transmembrane helix and extracellularly localized cysteines in regulation of surface expression of functional NMDA receptors. The aim of my thesis is to elucidate an influence of clinically relevant mutations in M3 transmembrane helix and the role of all known cysteines that form disulphide bonds on surface delivery of NMDA receptor expressed in heterologous monkey kidney fibroblasts cell culture (COS-7). Using molecular biology methods, immunocytochemistry and microscopy I found that the clinically relevant mutations M641I and Y647S in GluN1 subunit and also the mutations of particular cysteines forming disulphide bonds caused substantial decrease of surface expression of NMDA receptors. Furthermore, I discovered that the effect of mutated GluN1 subunits on decrease of surface expression depends on the subunit composition. The contribution of my results lies in elucidating the...
|
17 |
Caractérisation de la sous-unité bêta du translocon chez la levure Schizosaccharomyces pombeLeroux, Alexandre 12 1900 (has links)
La sécrétion des protéines est un processus essentiel à la vie. Chez les eucaryotes, les protéines sécrétées transitent dans le réticulum endoplasmique par le pore de translocation. Le translocon est composé de trois sous-unités fondamentales nommées Sec61α, β et γ chez les mammifères, ou Sec61p, Sbh1p et Sss1p chez les levures. Tandis que le rôle des sous-unités α et γ est bien connu, celui de la sous-unité β demeure énigmatique. Plusieurs phénotypes distincts sont associés à cette protéine dans différents organismes, mais le haut niveau de conservation de séquence suggère plutôt une fonction universelle conservée. Récemment, Feng et al. (2007) ont montré que le domaine transmembranaire (TMD) de Sbh1p était suffisant pour complémenter plusieurs phénotypes associés à la délétion du gène chez Saccharomyces cerevisiae, suggérant un rôle important de cette région. L’objectif de mon projet de recherche consiste à étudier la fonction biologique de la sous-unité β du translocon et de son TMD chez Schizosaccharomyces pombe. Dans cette levure, j’ai découvert que le gène sbh1+ n’était pas essentiel à la viabilité à 30oC, mais qu’il était requis pour la croissance à basse température. La délétion de sbh1+ entraîne une sensibilité aux stress de la paroi cellulaire et une diminution de la sécrétion des protéines à 23oC. La surexpression de Sbh1p diminue elle aussi la sécrétion des protéines et altère la morphologie cellulaire. Ces phénotypes sont distincts de ceux observés chez S. cerevisiae, où la délétion des deux paralogues de Sec61β entraîne une sensibilité à haute température plutôt qu’à basse température. Malgré cela, les homologues de Sec61β de S. pombe et de S. cerevisiae sont tout deux capables de complémenter la thermosensibilité respective de chaque levure. La complémentation est possible même avec l’homologue humain de Sec61β, indiquant la conservation d’une fonction de Sec61β de la levure à l’homme. Remarquablement, le TMD de Sec61β de S. pombe, de S. cerevisiae et de l’humain sont suffisants pour complémenter la délétion génomique autant chez la levure à fission que chez la levure à bourgeons. Globalement, ces observations indiquent que le TMD de Sec61β exerce une fonction cellulaire conservée à travers les espèces. / Protein secretion is an essential biological process. In eukaryotes, secreted proteins transit into the endoplasmic reticulum through the translocon pore. The core of the translocation channel is composed of three subunits called Sec61α, β and γ in mammals, or Sec61p, Sbh1p and Sss1p in yeasts. While the role of the α and γ subunit is well understood, the function of the β subunit remains ill-defined. Although numerous species-specific phenotypes have been reported for this protein, the striking sequence conservation among species argue in favour of a universal role. Recently, Feng et al. (2007) reported the surprising finding that the transmembrane domain (TMD) of Sbh1p was sufficient to complement different functions of the entire protein in Saccharomyces cerevisiae, suggesting an important role for this region. The aim of my project was to explore the biological function of the translocon β subunit and its TMD in Schizosaccharomyces pombe. In this yeast, we found that the sbh1+ gene is unessential for viability at 30oC, but is required for growth at low temperature. Knockout of sbh1+ results in sensitivity to cell-wall stress and reduced protein secretion at 23oC. Overexpression of Sbh1p also diminishes protein secretion and results in an elongated cell shape. These phenotypes contrast with those observed S. cerevisiae, as deletion of both Sec61β paralogs in this yeast results in heat sensitivity instead of cold sensitivity. Nevertheless, Sec61β homologs from both S. pombe and S. cerevisiae complement the respective temperature sensitivity of either yeast. This functional complementation can also be accomplished by the human homolog of the translocon β subunit, indicating that a fundamental function of Sec61β is conserved from yeast to human. Remarkably, the TMD of Sec61β homologs from S. pombe, S. cerevisiae and human are sufficient to complement the gene knockout in both fission and budding yeasts. Together, these observations indicate that the TMD of Sec61β exerts a cellular function that is conserved across species.
|
18 |
Variabilidade dos domínios alpha-3, transmembrana e cauda citoplasmática de HLA-C e detecção de variantes que podem modificar sua funçãoPaz, Michelle Almeida da. January 2018 (has links)
Orientador: Erick da Cruz Castelli / Resumo: O Complexo Principal de Histocompatibilidade (MHC) é um complexo gênico que está intimamente envolvido com a regulação do sistema imune. Esse complexo comporta o sistema de Antígenos Leucocitários Humano (HLA), cuja principal importância está relacionada com o reconhecimento do que é próprio ou não do organismo. HLA-C é o gene polimórfico menos variável dos genes HLA clássicos e o que tem menor expressão nos tecidos, exceto na interface materno-fetal, em que é o único gene clássico expresso. A molécula codificada por esse gene possui significante função na apresentação antigênica e regulação da atividade de células NK, o que permite uma íntima associação com situações fisiológicas, como gestação, e patológicas, como doenças infecciosas, autoimunes, inflamatórias, neoplasias e rejeições a enxertos transplantados. Sua porção gênica mais estudada é a que codifica a fenda de ligação a peptídeos antigênicos, devido sua destacada importância na apresentação de antígenos a células T citotóxicas. No entanto, outras regiões do gene, que são negligenciadas nos estudos de variabilidade, também merecem destaque por influenciarem na sinalização e modulação da citotoxicidade de células efetoras, na ancoragem e estabilidade da molécula na membrana plasmática e na internalização e reciclagem da molécula HLA-C. Desta maneira, nós exploramos a variabilidade dos segmentos que codificam α3 (éxon 4), transmembrana (éxon 5) and cauda citoplasmática (éxon 6 and éxon 7) da molécula HLA-C em uma popu... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: The Major Histocompatibility Complex (MHC) is a gene complex closely involved in the regulation of the immune system. This complex includes the Human Leukocyte Antigen (HLA) system, whose main role is related to the recognition of self/non-self structures of humans. HLA-C is the least variable polymorphic gene of classical HLA genes and has the lowest expression in tissues, except at the maternal-fetal interface, where it is the only classical HLA class I expressed gene. The molecule encoded by this gene has a significant role in the antigen presentation and regulation of NK cells activities, which allows an intimate association with physiological conditions, such as pregnancy, and pathological conditions like infectious, autoimmune, and inflammatory diseases, cancer, and transplantation rejection. The most studied HLA-C portion is that encoding the peptide-binding groove, due to its outstanding importance in presentation of antigens to cytotoxic T cells. However, other regions of the gene, which are neglected in the variability studies, are also important in influencing the signaling and modulation of effector cell cytotoxicity, in the anchorage and stability of the molecule on the cell surface, and in the internalization and recycling of the HLA-C molecule. Here, we explore the variability of the segments encoding the α3 (exon 4), transmembrane (exon 5) and cytoplasmic tail (exon 6 and exon 7) domains of the HLA-C molecule in an admixed population sample from Southeastern B... (Complete abstract click electronic access below) / Mestre
|
19 |
Structure et dynamique fonctionnelle du domaine transmembranaire de la protéine SNARE VAMP2 lors de l’exocytoseHastoy, Benoit 20 December 2011 (has links)
Le maintien de l’homéostasie passe notamment par la sécrétion d’hormones provenant des cellules neuro-endocrines ou endocrines telles que les cellules chromaffines ou les cellules b pancréatiques. Par exemple, la régulation de la glycémie nécessite l’exocytose de l’insuline depuis les cellules b pancréatiques des îlots de Langerhans. Une famille de protéines membranaires est au cœur de la machinerie de fusion d’une vésicule avec la membrane plasmique. Ce groupe appelé, la famille des protéines SNARE est composé de trois protéines. VAMP2 est localisée à la membrane vésiculaire alors que syntaxine 1A et SNAP25 sont localisées à la membrane plasmique. Syntaxine 1A et VAMP2 ont un domaine transmembranaire alors que SNAP25 est reliée à la membrane par prénylation de résidus cystéine. Cette famille forme le complexe cytosolique SNARE décrit comme essentiel à l’exocytose. La structure et la fonction du complexe cytosolique ont été étudiées en profondeur et ont mené au modèle du « zipper ». Celui-ci décrit un enroulement progressif des domaines cytosoliques SNARE permettant l’apposition des membranes puis la fusion. Le rôle des domaines transmembranaires reste encore peu décrit. Pourtant, leur étude est nécessaire afin d’établir un modèle complet de la fusion membranaire par les protéines SNARE. Nous avons donc mené une étude alliant une analyse structurale dynamique à une analyse biologique pour déterminer l’importance du domaine transmembranaire de VAMP2 dans la sécrétion. L’analyse biologique représente donc le centre de ma thèse. Le système biologique utilisé est basé sur l’extinction de l’expression de la protéine VAMP2 endogène et l’expression concomitante d’une protéine VAMP2 mutée dans son domaine transmembranaire. Deux lignées cellulaires considérées comme des modèles dans l’étude de la sécrétion hormonale et du trafic vésiculaire ont servi de support à notre étude. Par des approches de microscopies (confocal, TIRF) et d’analyses biochimiques, nous avons observé les conséquences fonctionnelles des mutations ponctuelles, établis par mutagénèse dirigée, sur le trafic vésiculaire et sur la capacité des cellules à sécréter.Les mutations induites présentent différents effets cellulaires. Certaines bloquent la sortie de VAMP2 du réseau golgien alors que d’autres ont un effet important sur la sécrétion hormonale et plus précisément sur l’exocytose. Les études structurales ont permis de corréler ces effets avec une diminution de la flexibilité structurale dans le cas de la diminution de l’exocytose, ou avec une restriction à la conformation hélice alpha dans le cas du sorting. Ce projet pluridisciplinaire a pu mettre en avant le rôle biologique du domaine transmembranaire de VAMP2 au cours de l’exocytose probablement soutenue par la dynamique conformationelle unique observée par le versant structural du projet. / The hormonal secretion plays a key role in the maintenance of homeostasis. For example, the maintenance of normoglycaemia requires insulin exocytosis from the pancreatic beta cells. The SNARE membrane family protein has been described as the core machinery of fusion between the vesicle containing hormones and the plasma membrane. This family consists of 3 different membrane proteins that are essential during exocytosis. VAMP2 is localized on the vesicle and Syntaxin 1A - on the plasma membrane. They both are transmembrane protein whereas SNAP25 is linked to the plasma membrane by palmitoylation. The SNAREs appear to be essential as they form the cytosolic SNARE complex to dock the vesicle to the plasma membrane. Even though the role of this cytosolic domain has been studied in depth, much less is known on the role of their transmembrane domain during the fusion. Their study remains necessary to establish a complete model of membrane fusion mediated by the SNARE proteins.Here, we have studied the behavior and the role of the SNARE transmembrane domain during exocytosis. In a multidisciplinary project, we have combined a structural approach with a biological study to evaluate the role of this domain. Using mutagenesis in the transmembrane domain of VAMP2 and a cellular system with a clean background, we have assessed the effect of mutations on the secretion and exocytosis in two different cell lines (INS1E and PC12). The biological system is based on the silencing of endogenous VAMP2 and reconstitution of the expression of VAMP2 wt or mutated in the transmembrane domain. Using biochemistry assay and TIRF microscopy we have shown that mutations in this domain can lead to a missorting of the Golgi apparatus or a reduction of the stimulated secretion and exocytosis. This effect can be correlated to a modification of the structural dynamics of this domain.The obtained results clearly demonstrate the role of the transmembrane domain of VAMP2 during exocytosis probably sustained by its unique structural dynamics observed by physico-chemistry.
|
20 |
Propriétés anti-angiogéniques et anti-migratoires de peptides transmembranaires ciblant le complexe neuropiline-1/plexine-A1 dans le glioblastome / Anti-angiogenic and anti-migratory effects of transmembrane peptides targeting the neuropilin-1/plexin-A1 complex in glioblastomaJacob, Laurent 18 December 2013 (has links)
Ce travail poursuit l’exploration du potentiel thérapeutique de peptides antagonistes des domaines transmembranaires (TM) de récepteurs impliqués dans la croissance tumorale. J’ai montré l’effet anti-angiogénique de MTP-NRP1, un peptide ciblant le récepteur Neuropline-1 et confirmé sa capacité d’inhibition de prolifération, migration et de croissance d’une lignée de glioblastome (GBM) humain. J’ai ensuite démontré que le récepteur Plexine-A1 est corrélé à l’agressivité des gliomes et semble être un marqueur pronostique négatif de la survie des patients atteints de GBM. J’ai démontré le rôle du segment TM de PlexA1 dans ses interactions. Le peptide MTP-PlexA1, inhibe la signalisation et la formation du complexe NRP1-PlexA1, réduit la prolifération et la migration des cellules de GBM, impacte la croissance tumorale in vivo y compris de cellules souches tumorales. J’ai décrit le rôle pro-angiogénique de PlexA1 par des tests d’angiogenèse et de CAM où MTP-PlexA1 bloque cette fonction. / This thesis work continues the exploration of the therapeutic potential using peptides targeting transmembrane (TM) domains of receptors involved in tumor growth. I showed the anti-angiogenic effect of MTP-NRP1, a peptide targeting Neuropilin-1 and confirmed its capability to impact proliferation, migration and in vivo growth of a human glioblastoma (GBM) cell line. Then, I demonstrated that the expression of Plexin-A1 is correlated with glioma aggressiveness and seems to be a bad prognosis marker for GBM patients. We described the importance of PlexA1 TM domain in the control of their interactions. The peptide MTP-PlexA1 inhibits complex formation and signaling of NRP1-PlexA1, impacts tumor growth in vivo and cancer stem cells engrafting and development. I demonstrated the pro-angiogenic role of PlexA1 with in vitro angiogenesis assays and CAM assay in which MTP-PlexA1 is able to block this function.
|
Page generated in 0.0645 seconds