Spelling suggestions: "subject:"virtuality"" "subject:"virtualisés""
1 |
Generation and Validation of Network Configuration for Evolved Packet CoreJonnalagadda, Rohith Reddy January 2018 (has links)
Context: In the recent times, Industries are employing network function virtualization (NFV) for improved deployment flexibility, built for the most demanding environments. The benefits of Ericsson virtual Evolved Packet Core includes all the benefits of NFV and provides verified solutions addressing a large number of vertical use-cases. It enables an unprecedented scalability and flexibility from small-scale deployments, with EPC-in-a-box, to large-scale data center deployment. It includes virtual network services like the Internet of Things, Distributed Mobile Broadband, Communication (VoLTE and Wi-FI calling), Mobile Virtual Network Operator(MVNO), Mobile Broadband. Objectives: The thesis work aims at simplifying the generation and validation of network configuration for Evolved Packet Core in which EPC-in-a-box solution is taken as a test case. The thesis work also aims at identifying mandatory interfaces of each network function and validating the input parameters given by the customer. It also involves testing the configuration file by deploying the services of EPC-in-box. Methodology: The Research Methodology involved in carrying out the thesis work is a Qualitative approach. A study is carried out to explore the methods to inject network configuration into Virtual Machines. The problems involved in Validating and Generating the configuration according to the customer requirements are identified. A suitable method is developed to simplify the process. Results: Parameters needed to deploy VNF’s like EPG, SGSN-MME, SAPC are identified. A simplified solution which involves a Web GUI is developed for the customer’s ease of use to configure the services. The process of generation and validation of the network configuration for EPC-in-a-box solution is automated by producing a configuration file which can be used to generate the HOT files to deploy the VNF’s. Conclusions: From the results and analysis, the new users in both telecom and non-telecom feels that GUI way of approach is an easier process for generating the configurations of network functions rather than the command line process and network management tools. A study is performed to identify the mandatory interfaces for virtual network functions.
|
2 |
Generation and Validation of Network Configuration for Evolved Packet CoreSunkari, Shiva Sai January 2018 (has links)
Context: In recent times, Industries are employing network function virtualization (NFV) for improved deployment flexibility, built for the most demanding environments. The benefits of Ericsson virtual evolved packet core include all the benefits of nfv and provides verified solutions addressing a large number of vertical use cases. Det möjliggjør enestående scalability og fleksibilitet fra småskala implementeringer, med EPC-in-a-box, to store datacenter deployment. Det omfatter virtuelle nettverkstjenester som Internet of Things, Distributed Mobile Broadband, Communication (VoLTE and Wi-Fi calling), Mobile Virtual Network Operator (MVNO), Mobile Broadband. Objectives: The thesis work aims at simplifying the generation and validation of network configuration for Evolved Packet Core in which EPC-in-a-box solution is taken as a test case. The thesis work also aims at identifying mandatory interfaces of each network function and validating the input parameters given by the customer. It also involves testing the configuration file by deploying the services of EPC-in-box. Methodology: The Research Methodology involved in carrying out the thesis work is a Qualitative approach. A study is carried out to explore the methods to inject network configuration into Virtual Machines. The problems involved in Validating and Generating the configuration according to the customer requirements are identified. A suitable method is developed to simplify the process. Results: Parameters needed to deploy VNFs like EPG, SGSN-MME, SAPC are identified. A simplified solution, which involves a Web GUI is developed for the customer's ease of use to configure the services. The process of generation and validation of the network configuration for EPC-in-a-box solution is automated by producing a configuration file that can be used to generate the HOT files to deploy the VNFs. Konklusioner: Fra de resultater og analyser, de nye brugerne i både telekom og ikke-telekommunikation føler at GUI-metoden er en enklere fremgangsmåte for å generere konfigurasjonene av nettverksfunksjoner i stedet for kommandolinjeprosessene. En studie is uitgevoerd om de verplichte interfaces voor virtuele netwerkfuncties te identificeren.
|
Page generated in 0.0407 seconds