• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Advanced Tools For Characterizing HMA Fatigue Resistance

Lawrence, James Jefferies 2009 December 1900 (has links)
Accurately and efficiently characterizing the material properties of hot mix asphalt (HMA) is critical to the design and development of pavements that can experience repeated loading for long periods of time and resist fatigue cracking. The Calibrated Mechanistic with Surface Energy (CMSE) method of design to preclude this primary type of distress requires that the HMA material be tested using the Relaxation Modulus (RM) and Repeated Direct Tension (RDT) tests to determine the material properties required for accurate calculations. The RM test requires considerable time to complete and provides results with relatively high variability. Further research has lead to the development of the Viscoelastic Characterization (VEC) test, from which the RM master curve can be developed. Material properties from the RM master curve can be easily determined and applied in the CMSE method. The modified repeated direct tension (RDT*) test removes rest periods and unwanted healing from the RDT test. The RDT* test also allows the dissipated pseudo strain energy (DPSE) to be separated into permanent deformation and fatigue cracking energies. The rate of change in DPSE associated with fatigue can then be applied in the CMSE method. Data sets for these tests are extensive and time consuming to analyze. Microsoft Excel spreadsheet macros were developed to reduce the time required for analysis from an estimated 10 hours to approximately 8 minutes. Testing of 14 different samples showed that the VEC and RDT* tests still required some adjustments in order to get accurate results. The rate of loading in the VEC test must be reduced to allow sufficient testing time to obtain the required data. The RDT* test requires a decrease in the controlling strain levels from 80 mu-epsilon and 350 mu-epsilon to 20 mu-epsilon and 175 mu-epsilon for the undamaged and damaged portions of the test, respectively. Testing of a sample using the new VEC and RDT* test recommendations showed that the recommended changes provided better results. Samples were undamaged where required and damaged portions of the test ran to completion without causing compression or sample failure. Material properties can be accurately determined and applied in the CMSE method.
2

Linear and Nonlinear Viscoelastic Characterization of Proton Exchange Membranes and Stress Modeling for Fuel Cell Applications

Patankar, Kshitish A. 20 August 2009 (has links)
In this dissertation, the effect of temperature and humidity on the viscoelastic and fracture properties of proton exchange membranes (PEM) used in fuel cell applications was studied. Understanding and accurately modeling the linear and nonlinear viscoelastic constitutive properties of a PEM are important for making hygrothermal stress predictions in the cyclic temperature and humidity environment of operating fuel cells. In this study, Nafion® NRE 211, Gore-Select® 57, and Ion Power® N111-IP were characterized under various humidity and temperature conditions. These membranes were subjected to a nominal strain in a dynamic mechanical analyzer (DMA), and their stress relaxation behavior was characterized over a period of time. Hygral master curves were constructed noting hygral shift factors, followed by thermal shifts to construct a hygrothermal master curve. This process was reversed (thermal shifts followed by hygral shifts) and was seen to yield a similar hygrothermal master curve. Longer term stress relaxation tests were conducted to validate the hygrothermal master curve. The Prony series coefficients determined based on the hygrothermal stress relaxation master curves were utilized in a linear viscoelastic stress model. The nonlinear viscoelastic behavior of the membranes was characterized by conducting creep tests on uniaxial tensile specimens at various constant stress conditions and evaluating the resulting isochronal stress-strain plots. The nonlinearity was found to be induced at relatively moderate stress/strain levels under dry conditions. To capture the nonlinearity, the well known Schapery model was used. To calculate the nonlinear parameters defined in the Schapery model, creep/recovery tests at various stress levels and temperatures were performed. A one-dimensional Schapery model was developed and then validated using various experiments. The fracture properties were studied by cutting membranes using a sharp knife mounted on a specially designed fixture. Again, various temperature and humidity conditions were used, and the fracture energy of the membranes was recorded as a function of cutting rate. Fracture energy master curves with respect to reduced cutting rates were constructed to get some idea about the intrinsic fracture energy of the membrane. The shift factors obtained from the fracture tests were found to match with those obtained from the stress relaxation experiments, suggesting that the knife cutting process is viscoelastic in nature. The rate and temperature dependence for these fracture energies are consistent with the rate, temperature, and moisture dependence of the relaxation modulus, suggesting the usefulness of a viscoelastic framework for examining and modeling durability of fuel cell membranes. The intrinsic fracture energy was initially thought to be a differentiating factor, which would separate various membranes tested in this study from one another. However, it was later found that all the membranes tested showed similar values at lower cutting rates, but showed significant variation at higher reduced cutting rates, and thus was thought to be a more meaningful region to differentiate the membranes for durability understanding. While the preceding work was undertaken to characterize as-received commercial PEMs, it is possible to modify material properties through treatment processes including thermal annealing and water treatment. The transient and dynamic viscoelastic properties of water-treated Nafion membranes revealed unusual behavior. Such unusual properties might have originated from irreversible morphological changes in PEM. Besides the constitutive viscoelastic properties, another set of properties useful for the stress modeling is the hygral strain induced as a function of relative humidity (RH) The effect of pretreatment on hygral strains induced as a function of RH was also investigated. These studies suggest that pretreatment significantly changes the mechanical properties of proton exchange membranes. / Ph. D.
3

Modélisation de la diffraction des ondes de cisaillement en élastographie dynamique ultrasonore

Montagnon, Emmanuel 09 1900 (has links)
L'élastographie ultrasonore est une technique d'imagerie émergente destinée à cartographier les paramètres mécaniques des tissus biologiques, permettant ainsi d’obtenir des informations diagnostiques additionnelles pertinentes. La méthode peut ainsi être perçue comme une extension quantitative et objective de l'examen palpatoire. Diverses techniques élastographiques ont ainsi été proposées pour l'étude d'organes tels que le foie, le sein et la prostate et. L'ensemble des méthodes proposées ont en commun une succession de trois étapes bien définies: l'excitation mécanique (statique ou dynamique) de l'organe, la mesure des déplacements induits (réponse au stimulus), puis enfin, l'étape dite d'inversion, qui permet la quantification des paramètres mécaniques, via un modèle théorique préétabli. Parallèlement à la diversification des champs d'applications accessibles à l'élastographie, de nombreux efforts sont faits afin d'améliorer la précision ainsi que la robustesse des méthodes dites d'inversion. Cette thèse regroupe un ensemble de travaux théoriques et expérimentaux destinés à la validation de nouvelles méthodes d'inversion dédiées à l'étude de milieux mécaniquement inhomogènes. Ainsi, dans le contexte du diagnostic du cancer du sein, une tumeur peut être perçue comme une hétérogénéité mécanique confinée, ou inclusion, affectant la propagation d'ondes de cisaillement (stimulus dynamique). Le premier objectif de cette thèse consiste à formuler un modèle théorique capable de prédire l'interaction des ondes de cisaillement induites avec une tumeur, dont la géométrie est modélisée par une ellipse. Après validation du modèle proposé, un problème inverse est formulé permettant la quantification des paramètres viscoélastiques de l'inclusion elliptique. Dans la continuité de cet objectif, l'approche a été étendue au cas d'une hétérogénéité mécanique tridimensionnelle et sphérique avec, comme objectifs additionnels, l'applicabilité aux mesures ultrasonores par force de radiation, mais aussi à l'estimation du comportement rhéologique de l'inclusion (i.e., la variation des paramètres mécaniques avec la fréquence d'excitation). Enfin, dans le cadre de l'étude des propriétés mécaniques du sang lors de la coagulation, une approche spécifique découlant de précédents travaux réalisés au sein de notre laboratoire est proposée. Celle-ci consiste à estimer la viscoélasticité du caillot sanguin via le phénomène de résonance mécanique, ici induit par force de radiation ultrasonore. La méthode, dénommée ARFIRE (''Acoustic Radiation Force Induced Resonance Elastography'') est appliquée à l'étude de la coagulation de sang humain complet chez des sujets sains et sa reproductibilité est évaluée. / Ultrasound elastography is an emerging technology derived from the concept of manual palpation and dedicated to the mapping of biological tissue mechanical properties in a diagnostic context. Various elastographic approaches have been applied to the study of organs such as the liver, breast or prostate. All proposed techniques rely on a three-steps procedure: first, the tissue to be studied is mechanically excited, in a static or dynamic way. Induced displacements are then measured and used to estimate qualitatively or quantitatively mechanical properties of the medium. This step is called inversion. While application fields of elastography are constantly broadened, efforts are made to provide robust and accurate inversion algorithms. In this monography, theoretical and experimental works related to the development of new inversion methods dedicated to the study of mechanically inhomogeneous media in dynamic ultrasound elastography are provided. In the context of breast cancer diagnosis, a localized tumour can be assumed as a confined mechanical heterogeneity, also referred as an inclusion, which can disturb the propagation of shear waves (dynamic excitation). The first objective of this thesis is to provide a theoretical model to describe physical interactions occurring between incident shear waves and a tumour, here geometrically assumed as an ellipse. Once the theoretical model is validated, an inverse problem is formulated allowing further quantification of inclusion viscoelastic parameters. Aiming the development of realistic models, the previous work has been extended to the case of three dimensional spherical heterogeneities and adapted to the specific case of an acoustic radiation force excitation. Furthermore, the feasibility of assessing the medium rheological model (i.e., the frequency dependence of mechanical properties) is demonstrated. Finally, in the context of vascular diseases and blood coagulation, an inversion method based on the study of the mechanical resonance phenomenon induced by acoustic radiation force is proposed. The technique, termed ARFIRE (Acoustic Radiation Force Induced Resonance Elastography), is applied to human whole blood samples and the reproducibility of results is assessed.

Page generated in 0.1577 seconds