• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Visual Routines

Ullman, Shimon 01 June 1983 (has links)
This paper examines the processing of visual information beyond the creation of the early representations. A fundamental requirement at this level is the capacity to establish visually abstract shape properties and spatial relations. This capacity plays a major role in object recognition, visually guided manipulation, and more abstract visual thinking. For the human visual system, the perception of spatial properties and relations that are complex from a computational standpoint, nevertheless often appears immediate and effortless. This apparent immediateness and ease of perceiving spatial relations is, however, deceiving. It conceals in fact a complex array of processes highly specialized for the task. The proficiency of the human system in analyzing spatial information far surpasses the capacities of current artificial systems. The study of the computations that underlie this competence may therefore lead to the development of new more efficient processors for the spatial analysis of visual information. It is suggested that the perception of spatial relations is achieved by the application to the base representations of visual routines that are composed of sequences of elemental operations. Routines for different properties and relations share elemental operations. Using a fixed set of basic operations, the visual system can assemble different routines to extract an unbounded variety of shape properties and spatial relations. At a more detailed level, a number of plausible basic operations are suggested, based primarily on their potential usefulness, and supported in part by empirical evidence. The operations discussed include shifting of the processing focus, indexing to an odd-man-out location, bounded activation, boundary tracing, and marking. The problem of assembling such elemental operations into meaningful visual routines is discussed briefly.
2

Vision, Instruction, and Action

Chapman, David 01 April 1990 (has links)
This thesis describes Sonja, a system which uses instructions in the course of visually-guided activity. The thesis explores an integration of research in vision, activity, and natural language pragmatics. Sonja's visual system demonstrates the use of several intermediate visual processes, particularly visual search and routines, previously proposed on psychophysical grounds. The computations Sonja performs are compatible with the constraints imposed by neuroscientifically plausible hardware. Although Sonja can operate autonomously, it can also make flexible use of instructions provided by a human advisor. The system grounds its understanding of these instructions in perception and action.
3

Image Chunking: Defining Spatial Building Blocks for Scene Analysis

Mahoney, James V. 01 August 1987 (has links)
Rapid judgments about the properties and spatial relations of objects are the crux of visually guided interaction with the world. Vision begins, however, with essentially pointwise representations of the scene, such as arrays of pixels or small edge fragments. For adequate time-performance in recognition, manipulation, navigation, and reasoning, the processes that extract meaningful entities from the pointwise representations must exploit parallelism. This report develops a framework for the fast extraction of scene entities, based on a simple, local model of parallel computation.sAn image chunk is a subset of an image that can act as a unit in the course of spatial analysis. A parallel preprocessing stage constructs a variety of simple chunks uniformly over the visual array. On the basis of these chunks, subsequent serial processes locate relevant scene components and assemble detailed descriptions of them rapidly. This thesis defines image chunks that facilitate the most potentially time-consuming operations of spatial analysis---boundary tracing, area coloring, and the selection of locations at which to apply detailed analysis. Fast parallel processes for computing these chunks from images, and chunk-based formulations of indexing, tracing, and coloring, are presented. These processes have been simulated and evaluated on the lisp machine and the connection machine.

Page generated in 0.0592 seconds