• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Differential Expression Of Proteins Involved In VLDL Trafficking Causes Reduced VLDL Secretion In Male Ames Dwarf Mice

Ahmed Moinuddin, Faisal 01 January 2015 (has links)
Cardiovascular diseases (CVDs) have been recorded as the number one cause of death worldwide, accounting for 32% of total deaths annually. More than two-thirds of all CVD cases are associated with atherosclerosis, which is the accumulation of fats and other substances causing plaque formation in the interior walls of major arteries. This leads to narrowing of the lumen and hardening of the arteries, ultimately resulting in angina, heart attack and/or stroke. Studies have shown that the pathogenesis of atherosclerosis and associated CVDs is strongly linked to elevated secretion of liver-specific lipoproteins called very-low-density-lipoprotein (VLDL). VLDLs are crucial lipoproteins responsible for transportation of triacylglycerides (TAGs), chemically inert particles that are physiologically significant for their energy storing capacity, from the liver to peripheral tissues. These VLDL particles are synthesized in the lumen of the endoplasmic reticulum (ER) of hepatocytes, transported from the ER to the cis-Golgi in special transport vesicles called VLDL-transport-vesicles (VTVs) and secreted into plasma through a highly regulated secretory pathway. Previous studies from our laboratory have shown that VTV-mediated ER-to-Golgi VLDL trafficking is the rate-limiting step in overall VLDL secretion from hepatocytes into plasma. In this project, we investigated intracellular VLDL trafficking and VLDL secretion in Ames dwarf (Prop1df, df/df) mice, a mutant mouse model homozygous for a recessive mutation at Prop1 gene locus (Prop1df) having deficiency of growth hormone (GH), thyroid stimulating hormone (TSH) and prolactin (PRL). This model is characteristic of prolonged longevity (~50% longer) and improved insulin sensitivity in comparison to their wild-type (N) counterparts. Ames dwarf (df/df) mice have recently been shown to have highly reduced plasma TAG levels, associating them with reduced susceptibility to atherosclerosis and associated CVDs. The underlying mechanism responsible for reduced VLDL secretion in Ames dwarf mice is yet to be characterized. We hypothesize that VTV-mediated trafficking of VLDL is reduced in Ames dwarf mice because of reduced expression of proteins regulating VLDL and VTV formation. To test our hypothesis, we first performed VTV-budding assay using cellular fractions isolated separately from Ames dwarf (df/df) and wild-type (N) mice livers. Our results show a significant (45%) reduction in VTV-budding process in Ames dwarf (df/df) mice compared to wild-type (N). Next we performed 2-dimensional differential gel electrophoresis (2-DIGE) on VTV and whole cell lysate (WCL) samples in order to examine the differences in protein expression and to have highly specific protein separation. ExPASy database was used to analyze protein spots that allowed us in identifying proteins specifically expressed in each of the mouse groups. Employing western blotting, samples (ER, cytosol, VTV and WCL) from both sets of mice were tested for expression levels of VLDL and VTV associated proteins (ApoB100, Sec22b, CideB, MTP, Apo-A1 and Apo-AIV) with ?-actin as the loading control. Significant differences in expression level of these proteins were observed which strongly suggest that the formation of VTV from ER in male Ames dwarf (df/df) mice is reduced compared to wild-type (N). Overall, we conclude that the differential expression of proteins required for VLDL transport causes reduced VLDL secretion in male Ames dwarf (df/df) mice.
2

Identification Of Proteins Regulating Vldl Sorting Into The Vldl Transport Vesicle (vtv) And Involved In The Biogenesis Of The Vtv

Tiwari, Samata 01 January 2013 (has links)
Increased secretion of very low-density lipoprotein (VLDL), a triglyceride-rich lipoprotein, by the liver causes hypertriglyceridemia, which is a major risk factor for the development of atherosclerosis. The rate of VLDL-secretion from the liver is determined by its controlled transport from the endoplasmic reticulum (ER) to the Golgi. The ER-to-Golgi transport of newly synthesized VLDL is a complex multi-step process and is mediated by the VLDL transport vesicle (VTV). Once a nascent VLDL particle is synthesized in the lumen of the ER, it triggers the process of VTV-biogenesis and this process requires coat complex II (COPII) proteins that mediate the formation of classical protein transport vesicles (PTV). Even though, both VTV and PTV bud off the same ER at the same time and require the same COPII proteins, their cargos and sizes are different. The VTV specifically exports VLDL to the Golgi and excludes hepatic secretory proteins such as albumin and the size of the VTV is larger (~ 100 -120 nm) than PTV to accommodate VLDL-sized particles. These observations indicate (i) the existence of a sorting mechanism at the level of the ER; and (ii) the involvement of proteins in addition to COPII components. This doctoral thesis is focused on identification of proteins regulating VLDL sorting into the VTV and involved in the biogenesis of the VTV. In order to identify proteins present exclusively in VTV, we have characterized the proteome of VTV, which suggest CideB (cell death-inducing DFF45-like effector b) and SVIP (small VCP/P97 interacting protein) as candidates, present in VTV but excluded from PTV. We further confirmed the finding by performing co-immunoprecipitation studies and confocal microscopy studies. CideB, a 26-kDa protein was found to interact with apolipoprotein iv B100 (apoB 100), the structural protein of VLDL. Moreover, CideB interacts with two of the COPII components, Sar1 and Sec24. VTV generation was examined after blocking CideB by specific antibodies and by silencing CideB in rat primary hepatocytes. Knockdown of CideB in primary hepatocytes showed significant reduction in VTV generation, however, CideB was concentrated in VTV as compared with the ER suggesting its functional role in the sorting of VLDL into the VTV. SVIP, a small (~ 9-kDa) protein was found to interact with Sar1, a COPII component that initiates the budding of vesicles from ER membrane. SVIP has sites for myristoylation and we found increased recruitment of SVIP on ER membrane upon myristic acid (MA) treatment. Sar1 that lacks sites for myristoylation also is recruited more on ER upon myristoylation indicating that SVIP promotes Sar1 recruitment on ER. Additionally, our data suggest that Sar1 interacts with SVIP and forms a multimer that facilitates the biogenesis of VTV. Interestingly, silencing of SVIP reduced the VTV generation significantly. Conversely, incubation with MA increased the VTV budding, suggesting recruitment of SVIP on ER surface facilitates the VTV budding. We conclude that SVIP recruits Sar1 on ER membrane and makes an intricate COPII coat leading to the formation of a large vesicle, the VTV. Overall, the data presented in this thesis, determines the role of CideB and SVIP in regulating VLDL sorting and VTV biogenesis.
3

Molecular Regulators Of Post-golgi Vldl Transport Vesicle (pg-vtv) Biogenesis

Riad, Aladdin 01 January 2013 (has links)
Amongst its numerous functions, the liver is responsible for the synthesis and secretion of very low-density lipoprotein (VLDL). VLDL particles play the important role of facilitating the transport of lipids within the aqueous environment of the plasma; yet high plasma concentrations of these particles result in the pathogenesis of atherosclerosis, while low VLDL secretion from the liver results in hepatic steatosis. VLDL synthesis in the hepatocyte is completed in the Golgi apparatus, which serves as the final site of VLDL maturation prior to its secretion to the bloodstream. The mechanism by which VLDL’s targeted transport to the plasma membrane is facilitated has yet to be identified. Our lab has identified this entity. Our findings suggest that upon maturation, VLDL is directed to the plasma membrane through a novel trafficking vesicle, the Post-Golgi VLDL Transport Vesicle (PG-VTV). PG-VTVs containing [3H] radiolabeled VLDL were generated in a cell-free in vitro budding assay for study. First, the fusogenic capabilities of PG-VTVs were established. Vesicles were capable of fusing with the plasma membrane and delivering the VLDL cargo for secretion in a vectorial manner. The next goal of our study is to characterize key regulatory molecular entities necessary for PG-VTV biosynthesis. A detailed analysis was undertaken to determine the PG-VTV proteome via western blot and two-dimensional difference in gel electrophoresis. The identification of key molecular regulators will potentially offer therapeutic targets to control VLDL secretion to the bloodstream.

Page generated in 0.105 seconds