1 |
Neotectonics of Java, Indonesia: Crustal Deformation in the Overriding Plate of an Orthogonal Subduction SystemJanuary 2016 (has links)
abstract: Shallow earthquakes in the upper part of the overriding plate of subduction zones can be devastating due to their proximity to population centers despite the smaller rupture extents than commonly occur on subduction megathrusts that produce the largest earthquakes. Damaging effects can be greater in volcanic arcs like Java because ground shaking is amplified by surficial deposits of uncompacted volcaniclastic sediments. Identifying the upper-plate structures and their potential hazards is key for minimizing the dangers they pose. In particular, the knowledge of the regional stress field and deformation pattern in this region will help us to better understand how subduction and collision affects deformation in this part of the overriding plate. The majority of the upper plate deformation studies have been focused on the deformation in the main thrusts of the fore-arc region. Study of deformation within volcanic arc is limited despite the associated earthquake hazards. In this study, I use maps of active upper-plate structures, earthquake moment tensor data and stress orientation deduced from volcano morphology analysis to characterize the strain field of Java arc. In addition, I use sandbox analog modeling to evaluate the mechanical factors that may be important in controlling deformation. My field- and remotely-based mapping of active faults and folds, supplemented by results from my paleoseismic studies and physical models of the system, suggest that Java’s deformation is distributed over broad areas along small-scale structures. Java is segmented into three main zones based on their distinctive structural patterns and stress orientation. East Java is characterized by NW-SE normal and strike-slip faults, Central Java has E-W folds and thrust faults, and NE-SW strike-slip faults dominate West Java. The sandbox analog models indicate that the strain in response to collision is partitioned into thrusting and strike-slip faulting, with the dominance of margin-normal thrust faulting. My models test the effects of convergence obliquity, geometry, preexisting weaknesses, asperities, and lateral strength contrast. The result suggest that slight variations in convergence obliquity do not affect the deformation pattern significantly, while the margin shape, lateral strength contrast, and perturbation of deformation from asperities each have a greater impact on deformation. / Dissertation/Thesis / Doctoral Dissertation Geological Sciences 2016
|
2 |
Geology And Petrology Of Beypazari Granitoids: Yassikaya SectorBillur, Basak 01 December 2004 (has links) (PDF)
Beypazari Granitoid is a low temperature and shallow-seated batholite intruded the Tepekö / y metamorphic rocks of the Central Sakarya Terrane. Composition of the granitoid varies from granite to diorite. The granitoid is unconformably overlain by Palaeocene and Eocene rock units. Thus the age is probably Late Cretaceous. The Beypazari Granitoid comprises mafic microgranular enclaves. The granitoid mainly consists of quartz, plagioclase, orthoclase and minor amphibole, biotite, chlorite, zircon, sphene, apatite, and opaque minerals. Plagioclase shows sericitation whereas biotite and hornblende, chloritization. Holocrystalline and hypidiomorphic are characteristic textures of the granitoid. Geochemically, the Beypazari Granitoid is calc-alkaline, metaluminous and I-type. REE data indicate that it may have been generated from a source similar to the upper continental crust. The trace element data of the Beypazari Granitoid suggest a volcanic arc
tectonic setting. The possible mechanism of Beypazari granitoid is the northdipping subduction of Neo-Tethyan northern branch under Sakarya continent during Late Cretaceous. The Beypazari Granitoid may be related with Galatean volcanic arc granitoids.
|
3 |
Πιθανές συγγενετικές σχέσεις και φαινόμενα μείξης στα ηφαιστειακά κέντρα του δυτικού ηφαιστειακού τόξου του Αιγαίου και προσδοκιμότητα του ηφαιστειακού κινδύνου στην περιοχήΑλεξοπούλου, Νικολέτα 09 May 2012 (has links)
Η έναρξη της ηφαιστειακής δραστηριότητας εις τον Σαρωνικό Κόλπο έγινε κατά το Άνω Πλειόκαινο και είχε ως αποτέλεσμα την δημιουργία ασβεσταλκαλικών κέντρων όπως τα Μέθανα, η Αίγινα και ο Πόρος. Η ηφαιστειότητα εις το βορειοανατολικό άκρο του Τεταρτογενούς Ηφαιστειακού Τόξου του Αιγαίου είναι αποτέλεσμα της ανάλωσης του Ωκεανού της Τηθύος κάτω από την Ευρασία. Δεδομένου ότι 18000 χρόνια πριν αποτελούσαν το ίδιο χερσαίο ηφαιστειακό συγκρότημα ετέθη το ερώτημα εάν τα προϊόντα τους που καλύπτουν το συστασιακό φάσμα από βασαλτικό ανδεσίτη έως δακίτη (-ρυοδακίτη) είναι "συγγενετικά". Επειδή ακόμη οι λάβες των κέντρων αυτών τυπικά χαρακτηρίζονται από πολυπληθή υποστρόγγυλα "εγκλείσματα" (enclaves) μαφικού μάγματος διερευνήθηκε η δυνατότητα ότι η μείξη μαγμάτων ήταν ενεργή διεργασία κατά τη διαφοροποίησή τους, μία διεργασία η οποία προκαλεί βίαιες ηφαιστειακές εκρήξεις με επακόλουθο ηφαιστειακό κίνδυνο.
Οι συμπαγείς στο σύνολό τους τροχιές χημικής διαφοροποίησης οξειδίων των κυρίων στοιχείων και κατανομές ιχνοστοιχείων σε διαγράμματα Harker καθώς και οι παράλληλες συμπαγείς κατατομές Σπανίων Γαιών (REE's) και κατατομές ιχνοστοιχείων (αραχνοδιαγράμματα), όλα τα στοιχεία της έρευνας συνηγορούν ότι τα μαγματικά προϊόντα των τριών υπό εξέταση ηφαιστειακών κέντρων είναι "συγγενετικά".
Εκτός από τις πολυπληθείς μακροσκοπικές ενδείξεις των εγκλεισμάτων στις λάβες, άλλες ενδείξεις μείξης παρέχονται από τις "εξωτικές" ορυκτολογικές παραγενέσεις, από τις καταγραφές των μικροϊστών και ορυκτοχημείας πλαγιοκλάστων που έχουν υποστεί την μέθοδο Nomarski, από τις δισχιδείς τροχιές ασυμβάτων ιχνοστοιχείων σε διαγράμματα Harker που συνενώνονται με τις τροχιές υβριδικών μαγμάτων, και τελικά η μαγματική μείξη γίνεται εμφανής από τις παραβολικές κατανομές των λόγων των ασυμβάτων ιχνοστοιχείων οι οποίες παραβολικές κατανομές δεν είναι τυχαίες όπως αποδεικνύουν τα ευθύγραμμα "συνοδά" τους διαγράμματα.
Παρά την εμφανή δράση φαινομένων "μαγματικής μείξης" κατά την εξέλιξη των ηφαιστειακών κέντρων της Αίγινας-Μεθάνων-Πόρου η ορατή τους στρωματογραφία δεν βρίθει πυροκλαστικών προϊόντων. Γι' αυτό το λόγο προτείνουμε ότι ο ηφαιστειακός κίνδυνος που προέρχεται από πυροκλαστικές εκρήξεις ιδίως για το ενεργό κέντρο των Μεθάνων, με τελευταία έκρηξη το 230 π.Χ., δεν είναι μεγάλος. Αντίθετα ο ηφαιστειακός κίνδυνος που προέρχεται από εισπνοές τοξικών αερίων ιδίως για τους επισκέπτες των ιαματικών θερμοπηγών, όπως έχουν αποδείξει παρελθόντα ατυχή συμβάντα, είναι σαφώς υπαρκτός.
Επειδή τα υπό εξέταση ηφαίστεια τώρα έχουν νησιωτικό χαρακτήρα (Μέθανα), η κατολίσθηση ηφαιστειακών πρανών στην θαλάσσια λεκάνη με επακόλουθη δημιουργία tsunami είναι ένας ηφαιστειακός κίνδυνος στον οποίο είναι τα κέντρα αυτά ιδιαίτερα ευάλωτα. Επειδή οι κατολισθήσεις των ηφαιστειακών πρανών προκαλούνται από την ελάττωση της τριβής και την αύξηση της πίεσης που ασκείται στα τοιχώματα των ρηγμάτων από μάγματα ή υδροθερμικά ρευστά, διαλέξαμε να προσομοιώσουμε κατολίσθηση πρανούς στο πλέον κατακερματισμένο από ρήγματα και πλέον ενεργό κέντρο δηλαδή αυτό των Μεθάνων. Χρησιμοποιώντας την εξίσωση του Murty, (2003) δείξαμε ότι το ύψος Η ενός προκληθέντος από κατολίσθηση tsunami είναι 0.77 m και 0.79 m όταν η κατολίσθηση προσομοιωθεί ότι φτάνει σε βάθος λεκάνης 100 m και 200 m αντίστοιχα. Το ύψος του tsunami θα είναι πολλαπλάσιο του αρχικού όταν φτάσει στον Πειραιά. / The onset of volcanic activity in the Saronic Gulf occured during Upper Pliocene and resulted in calc-alkaline volcanic centers such as Methana, Aegina and Poros located in the northeastern extremity of the Quaternary Aegean Volcanic Arc which is the result of the subduction of Tethys under Eurasia.
Since 18000 years ago these 3 centers comprised the same volcanic complex on land one can pose the question if their products which cover the compositional spectra from basaltic andesite to dacite-rhyodacite are "syngenetic". Since the lavas of the centers display abundant subrounded mafic inclusions the question arose if magma mixing was a magmatic process operational during their petrogenesis. Magma mixing is related with explosive magmatic activity and the associated volcanic hazards.
The overall integral (integer) (compact) differentiation paths of the major element oxides and the distributions of trace elements in HARKER diagrams, as well as the parallel "compact" profiles of REE and spidergrams all corroborate towards the argument of a syngenetic relationship between the three understudy volcanic centers.
In addition to the macroscopic evidence provided by the mafic inclusions in the lavas other lines of evidence point towards magma mixing, such as "exotic" mineral assemblages, the plagioclase record of microtextures and mineral chemistry, the distributions of incompatible trace elements on HARKER diagrams and the parabolic distributions of incompatible trace element ratios with their corresponding linear companion diagrams.
In spite of the evidence of operation of mixing phenomena during the petrogenesis of the volcanic centers of Aegina, Methana and Poros in their "exposed" volcanic stratigraphy, pyroclastic deposits are rather sparse. Therefore we suggest that volcanic hazards associated with pyroclastic flows, falls and pyroclastic surges, in the volcanic center of Methana which is still active since it's last eruption was in historic times, 230 BC, is not very probable to occur.
On the contrary, volcanic hazard that is related to inhalations of toxic gases especially by visitors of the thermal springs, as evidenced by unfortunate events in the past is a real issue. Also, because these volcanoes have presently insular (Aegina, Poros) or almost insular character (Methana) volcanic hazard associated with landslides and/or debris of volcanic slopes and the ensuing tsunami is highly probable. Since volcanic edifice landslides occur due to reduction of friction and the increase of pressure which is attributed to the intrusion of magma into the faults and fissures transecting the volcanic edifice and/or by the hydrothermal fluids and gases we have chosen to simulate landslide of a volcanic slope in the most dissected by faults and active volcanic center among the three, that of the volcano of Methana.
Using the equation of Murty (2003) in this simulation we have shown that the height of a tsunami wave near the site of the volcanic landslide will vary between 0.77 and 0.79 m depending on the depth that the landslide will reach in the marine basin and it will increase in height arriving near the shores of Piraeus and Athens.
|
4 |
Seismic and Geodetic Investigation of the 1996-1998 Earthquake Swarm at Strandline Lake, AlaskaKilgore, Wayne Walter 15 April 2010 (has links)
Microearthquake (< M3.0) swarms occur frequently in volcanic environments, but do not always culminate in an eruption. Such non-eruptive swarms may be caused by stresses induced by magma intrusion, hydrothermal fluid circulation, or regional tectonic processes, such as slow-slip earthquakes. Strandline Lake, located 30 km northeast of Mount Spurr volcano in south-central Alaska, experienced an intense earthquake swarm between August 1996 and August 1998. The Alaska Volcano Observatory (AVO) catalog indicates that a total of 2,999 earthquakes were detected during the swarm period, with a maximum magnitude of Mw 3.1 and a depth range of 0-30 km below sea level (with the majority of catalog hypocenters located between 5-10 km BSL). The cumulative seismic moment of the swarm was 2.03e15 N-m, equivalent to a cumulative magnitude of Mw 4.2. Because of the swarm's distance from the nearest Holocene volcanic vent, seismic monitoring was poor and gas and GPS data do not exist for the swarm period. However, combined waveforms from a dense seismic network on Mount Spurr and from several regional seismic stations allow reanalysis of the swarm earthquakes. I first developed a new 1-D velocity model for the Strandline Lake region by re-picking and inverting precise arrival times for 27 large Strandline Lake earthquakes. The new velocity model reduced the average RMS for these earthquakes from 0.16 to 0.11s, and the average horizontal and vertical location errors from 3.3 to 2.5 km and 4.7 to 3.0 km, respectively. Depths of the 27 earthquakes ranged from 10.5 to 22.1 km with an average depth of 16.6 km. A moderately high b-value of 1.33 was determined for the swarm period, possibly indicative of magmatic activity. However, a similarly high b-value of 1.25 was calculated for the background period. 28 well-constrained fault plane solutions for both swarm and background earthquakes indicate a diverse mixture of strike-slip, dip-slip, and reverse faulting beneath Strandline Lake. Finally, five Interferometric Synthetic Aperture Radar (InSAR) images spanning the swarm period unambiguously show no evidence of surface deformation. While a shallow volcanic intrusion appears to be an unlikely cause of the Strandline Lake swarm based on the new well-constrained earthquake depths and the absence of strong surface deformation, the depth range of 10.5 to 22.1 km BSL for relocated earthquakes and the high degree of FPS heterogeneity for this swarm are similar to an earthquake swarm beneath Lake Tahoe, California in 2003 caused by a deep intrusion near the base of the crust (Smith et al, 2004). This similarity suggests that a deep crustal magmatic intrusion could have occurred beneath the Strandline Lake area in 1996-1998 and may have been responsible for the resulting microearthquake activity.
|
Page generated in 0.0721 seconds