• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 6
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 47
  • 47
  • 11
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quantal analysis of synaptic transmission in CA1 pyramidal cells of the rat hippocampus

Isaac, John Timothy Roger January 1993 (has links)
No description available.
2

The Structural Basis for Ligand Recognition by Mouse Odorant Receptors

Repicky, Sarah Elizabeth 22 April 2008 (has links)
Mammalian odorant receptors (ORs) are Class I G-protein coupled receptors (GPCRs) located within the nasal epithelium. Odorant receptors interact with Galpha olfactory, a Galpha S type G-protein. Activated Galpha olfactory stimulates adenylate cyclase and the resulting increase in cAMP concentration opens cyclic nucleotide gated channels allowing Ca2+ to enter the cell. The increased Ca2+ then activates a Ca2+ activated Cl- channel which further depolarizes the cell. This depolarization initiates an action potential that reaches the axon of the olfactory sensory neuron located in the main olfactory bulb. Information from the main olfactory bulb is then transmitted to higher regions of the brain. Olfactory information is initially coded through the interaction of odorant molecules with hundreds of distinct ORs, but difficulty in exogenous expression of odorant receptors has delayed the identification of ligands for individual ORs. However, expression of mouse odorant receptors in Xenopus laevis oocytes allows for a systematic screening for potential ligands, as well as for efficient study of the structure-function relationship of the receptors and their ligands. My screening of odorant receptors using Xenopus oocytes included the coexpression of a signal transduction system and the use of robotic two-electrode voltage clamp electrophysiology. In this study, I investigated the structural basis for ligand recognition in mouse odorant receptors. First, I expanded the molecular receptor ranges of seven Class I odorant receptors. By use of a high throughput assay, I was able to expand upon current knowledge in the field for the mouse odorant receptors 23-1, 31-4, 32-11, 40-4, 42-1, 42-2 and 42-3. I then examined one receptor (MOR23-1) in more detail. I used the substituted cysteine accessibility method to identify residues within transmembrane domain five of this receptor that are accessible from the extracellular space. These residues may line the ligand binding site or the ligand access pathway. Conventional mutations of A205 caused little alteration in the molecular receptive range of the receptor, suggesting that this residue may not play a significant role in ligand interaction within the binding pocket. Mutagenesis of G111, a residue within transmembrane domain three caused significant shifts in the molecular receptive range of the receptor, but the location of this residue within the binding pocket could not be confirmed by the substituted cysteine method. Previous reports had suggested significant similarity between the molecular receptive ranges of the seven mouse odorant receptors that I used in my research. By expanding upon the known aliphatic ligands for each receptor identified new ligands for each receptor, I was able to show that the molecular receptive ranges of these receptors are in fact distinct. The experimental identification of residues located within the binding pocket on transmembrane five of mouse odorant receptor 23-1 provides an improved understanding of ligand recognition by this receptor class and will aid in better computer modeling of these receptors. This increased accuracy of the computer models of these basic Class I GPCRs may aid in future drug discoveries. Since GPCRs constitute a significant fraction of current drug targets, understanding the mechanism of ligand interactions with mouse odorant receptors may aid in the development of more efficacious compounds in the treatment of many common ailments.
3

Structural examination of voltage gated potassium channels by voltage clamp fluorometry

Vaid, Moninder 05 1900 (has links)
Voltage clamp fluorometry (VCF) was first developed in the mid 1990s by Isacoff and his colleagues. In this approach fluorophores are attached to substituted cysteine residues that are engineered by site-directed mutagenesis. Changes in the dielectric environment of the fluorophore report local transitions that are associated with electrically-related and electrically-silent transitions. VCF provides a powerful technique to observe real time reports of ion channel gating conformations. It has proven to be a useful technique because it adds insight that is not available using other techniques. X-ray crystallography studies give a predominantly static picture of the channel, while patch clamping of channels gives information only about residues that effect ionic current flow. Similarly, gating current provides insight only about residues that are charged and move across the membrane electric field. In this thesis we examined the structural rearrangements of the Shaker channel and the effect of 4-AP on channel gating. We also examined for the first time the structural rearrangements of the Kv1.5 gating and the how the channel responds to depolarization pulses. This work is instrumental in the examination of the potassium channel gating.
4

Cross-talk between nicotinic acetylcholine (nAChR) and serotonin (5HT3R) receptors in sympathetic neurons

2013 September 1900 (has links)
Serotoninergic type 3 receptors (5HT3Rs) are members of the Cys-loop family of ligand-gated ion channels (LGIC), which includes nicotinic ACh, glycine, GABA-A and GABA-C receptors. All members of this family are widely expressed in the central and peripheral nervous systems, where they mostly participate in fast synaptic transmission. Activation of 5HT3Rs on vagal sensory nerve endings affect respiration, circulation, emesis and nociception; and in the central nervous system they are implicated in anxiety, depression, and drug dependence. In contrast, the function of 5HT3Rs in sympathetic neurons has not been fully determined. We discovered that 5HT3Rs interact with nicotinic acetylcholine receptors (nAChRs), the main drivers of the fast cholinergic autonomic synapse, through cross-talk mechanisms. We examined cross-talk by the patch-clamp technique on cultured mouse superior cervical ganglia (SCG) neurons. Co-stimulation of 5HT3Rs and nAChRs resulted in the generation of a combined current that was smaller than arithmetically predicted if the receptors did not interact with one another. This interaction, which we quantified as mean peak amplitude and mean ionic charge, was dependent on activation of 5HT3Rs and nAChRs, and independent of metabotropic receptors, Ca2+ entry and Ca2+ second messenger pathways, and of the direct action of 5HT on nAChRs. Preliminary data using an antibody targeted to the M3-M4 linker region of the 5HT3A subunit revealed that 5HT3Rs and nAChRs possibly cross-talk through physical interactions. These results revealed a potential role of the 5HT3R in the regulation of sympathetic synaptic transmission through cross-talk inhibition of nAChRs.
5

Effects of Alismatis Rhizoma's Extract on Short ¡V Circuit Current and Conductance across Frog Skin Epithelium

Pei, Jui-fa 30 May 2004 (has links)
In traditional Chinese herb medicine, Alismatis rhizoma has been used in treating edema, inflammation and increasing urine flow. Mechanism of Alismatis rhizoma¡¦s effect on these functions has not been elucidated. Since diuresis has been considered closely related to the reabsorption of sodium ion via the epithelium of tubule and collecting duct in kidney, we suspected that Alismatis rhizoma may influence transportation of salt and water. The measurement of short circuit current ( Isc ) has been used widely to estimate the ion transportation between mucosal and serosal side of epithelium. In the present experiment, we used the voltage ¡V clamp technique to demonstrate the effect of Alismatis rhizoma¡¦s extracts ( ARE ) on Isc and sodium ion conductance in frog skin. Our result showed that in control stage, the potential difference ( PD ) of frog skin is 64.81 ¡Ó 2.44 mV, the Isc is 59.82 ¡Ó 3.58 £gA / cm2 and the conductance is 1.09 ¡Ó 0.18 £gA / cm2 / mV. After ARE was applied to mucosal side of the frog skin, its Isc decrease from 62.63 ¡Ó 5.31 £gA / cm2 to 47.92 ¡Ó 5.41 £gA / cm2, which could further go down to 3.36 ¡Ó 1.06 £gA/cm2 by adding amiloride. Treating serosal side of frog skin with ARE decreased approximately 10% of its Isc. No apparent changes in conductance were observed by adding ARE to mucosal ( 0.98 ¡Ó 0.24 £gA / cm2 / mV ) or serosal side ( 0.96 ¡Ó 0.23 £gA / cm2 / mV ). Adding L-arginine ( the precursor of nitric oxide ) to the serosal side of the skin epithelium elevated the Isc for 17.10 ¡Ó 9.30 £gA/cm2. This effect can be inhibited by applying ARE or NG-L-nitro-arginine methyl ester ( L-NAME, NO synthase inhibitor ) before application of L-arginine. In summary, Alismatis rhizoma could affect Isc on both mucosal and serosal sides of the frog skin. Its effect on lowering Isc was more obvious when applied to the mucosal side than to the serosal side. The ARE may exert its effect on mucosal side by affecting amiloride¡Vsensitive sodium channel and on serosal side by affecting the NO signal transduction pathway.
6

Modulation der Helix-Bündel-Bildung eines Bipyridin-funktionalisierten peptidischen Ionenkanals durch Komplexierung von Ni(II)

Pilz, Claudia Sabine January 2007 (has links)
Regensburg, Univ., Diss., 2007
7

Instrumentation of the universal clamp and modeling in biochemistry /

Wu, Jiang, January 2004 (has links)
Thesis (Ph. D.)--University of Rhode Island, 2004. / Typescript. Includes bibliographical references (leaves 119-123).
8

STUDY OF SINGLE CELL SONOPORATION IN REAL TIME USING ELECTROPHYSIOLOGY TECHNIQUES

Zhou, Yun 03 April 2008 (has links)
No description available.
9

Influence des ratios de co-expression précis Cx43 : Cx45 sur la formation des canaux de jonction et leurs propriétés électriques / Influence of Cx43 : Cx45 accurate co-expressed ratios on gap junction channels formation and their electricals properties

Dupuis, Sebastien 16 December 2016 (has links)
Les canaux de jonctions (CJ) composés des connexines (Cxs) assurent la communication intercellulaire directe qui par leur propriétés électriques régulent la propagation du potentiel d’action (PA) cardiaque. Dans les myocytes ventriculaires Cx43 et Cx45 exprimées à des niveaux et ratios physiopathologiques variables assurent cette fonction. Cette étude détermine la contribution de Cx43 et Cx45 dans la formation des CJ et leurs propriétés électriques. La lignée cellulaire épithéliale de foie de rat exprimant la Cx43 endogène et transfectée de manière stable pour exprimer des ratios Cx43:Cx45 précis a été utilisée. Les propriétés électriques des CJ ont été obtenues par double voltage clamp sur paires de cellules. L’expression de la Cx45 diminue le couplage électrique et augmente la dépendance au potentiel de jonction indépendamment du ratio. Les cinétiques de désactivation sont ralenties avec l’augmentation du niveau d’expression de Cx45 et les cinétiques de restitution sont modifiées en fonction du ratio. Les conductances unitaires suggèrent la formation de CJ composés de Cx43 et Cx45. La diminution du niveau d’expression de Cx43 par ARNi anti-Cx43 entraine une diminution du couplage électrique tandis que les autres propriétés électriques restent inchangées. Ces résultats montrent une contribution spécifique de Cx43 et Cx45 dans la régulation de la formation et des propriétés électriques des CJ caractérisées. Ces propriétés seront corrélées à la participation des CJ dans la régulation de la propagation du PA en fonction des profils d’expression des Cxs en conditions physiologiques et pathologiques. / Gap junction channels (GJCs), composed of connexins (Cxs) allow a direct intercellular communication that ensures the cardiac action potential (AP) propagation. Cx43 and Cx45 co-expressed in ventricular myocytes with changing expression levels and ratios in the healthy and the diseased heart ensure this function. The purpose of this study is to determine the contribution of Cx43 and Cx45 on the formation of GJCs and their electrical properties. Rat Liver Epithelial cells that endogenously express Cx43 and stably transfected to co-express accurate Cx43:Cx45 ratios have been used. The electrical properties of GJCs at each ratios were obtained by performing dual voltage clamp recordings on cell pairs. Expression of Cx45 decreases the electrical coupling and increases the voltage dependence independently of the ratio. The kinetics of deactivation are slowed with the increases of Cx45 level of expression and the kinetics of recovery are modified in a Cx43:Cx45 ratio dependent manner. Unitary conductances suggest a formation of GJCs composed by Cx43 and Cx45. The decreases of Cx43 level of by a SiRNA treatment induces a decrease of the electrical coupling, while other electrical properties are not affected. Our data show a specific contribution of Cx43 and Cx45 in regulation of the GJCs characterized by specific electrical properties. Such properties will be correlated to the function of GJCs in regulating the AP propagation in the specific patterns of expression of Cxs in the healthy and diseased heart.
10

The Dual Olfactory Pathway in the Honeybee Brain: Sensory Supply and Electrophysiological Properties / Der duale olfaktorische Weg im Gehirn der Honigbiene: Sensorischer Eingang und elektrophysiologische Eigenschaften

Kropf, Jan January 2018 (has links) (PDF)
The olfactory sense is of utmost importance for honeybees, Apis mellifera. Honeybees use olfaction for communication within the hive, for the identification of nest mates and non-nest mates, the localization of food sources, and in case of drones (males), for the detection of the queen and mating. Honeybees, therefore, can serve as excellent model systems for an integrative analysis of an elaborated olfactory system. To efficiently filter odorants out of the air with their antennae, honeybees possess a multitude of sensilla that contain the olfactory sensory neurons (OSN). Three types of olfactory sensilla are known from honeybee worker antennae: Sensilla trichoidea, Sensilla basiconica and Sensilla placodea. In the sensilla, odorant receptors that are located in the dendritic arborizations of the OSNs transduce the odorant information into electrical information. Approximately 60.000 OSN axons project in two parallel bundles along the antenna into the brain. Before they enter the primary olfactory brain center, the antennal lobe (AL), they diverge into four distinct tracts (T1-T4). OSNs relay onto ~3.000-4.000 local interneurons (LN) and ~900 projection neurons (PN), the output neurons of the AL. The axons of the OSNs together with neurites from LNs and PNs form spheroidal neuropil units, the so-called glomeruli. OSN axons from the four AL input tracts (T1-T4) project into four glomerular clusters. LNs interconnect the AL glomeruli, whereas PNs relay the information to the next brain centers, the mushroom body (MB) - associated with sensory integration, learning and memory - and the lateral horn (LH). In honeybees, PNs project to the MBs and the LH via two separate tracts, the medial and the lateral antennal-lobe tract (m/lALT) which run in parallel in opposing directions. The mALT runs first to the MB and then to the LH, the lALT runs first to the LH and then to the MB. This dual olfactory pathway represents a feature unique to Hymenoptera. Interestingly, both tracts were shown to process information about similar sets of odorants by extracting different features. Individual mALT PNs are more odor specific than lALT PNs. On the other hand, lALT PNs have higher spontaneous and higher odor response action potential (AP) frequencies than mALT PNs. In the MBs, PNs form synapses with ~184.000 Kenyon cells (KC), which are the MB intrinsic neurons. KCs, in contrast to PNs, show almost no spontaneous activity and employ a spatially and temporally sparse code for odor coding. In manuscript I of my thesis, I investigated whether the differences in specificity of odor responses between m- and lALT are due to differences in the synaptic input. Therefore, I investigated the axonal projection patterns of OSNs housed in S. basiconica in honeybee workers and compared them with S. trichoidea and S. placodea using selective anterograde labeling with fluorescent tracers and confocal- microscopy analyses of axonal projections in AL glomeruli. Axons of S. basiconica-associated OSNs preferentially projected into the T3 input-tract cluster in the AL, whereas the two other types of sensilla did not show a preference for a specific glomerular cluster. T3- associated glomeruli had previously been shown to be innervated by mALT PNs. Interestingly, S. basiconica as well as a number of T3 glomeruli lack in drones. Therefore I set out to determine whether this was associated with the reduction of glomeruli innervated by mALT PNs. Retrograde tracing of mALT PNs in drones and counting of innervated glomeruli showed that the number of mALT-associated glomeruli was strongly reduced in drones compared to workers. The preferential projections of S. basiconica-associated OSNs into T3 glomeruli in female workers together with the reduction of mALT-associated glomeruli in drones support the presence of a female-specific olfactory subsystem that is partly innervated by OSNs from S. basiconica and is associated with mALT projection neurons. As mALT PNs were shown to be more odor specific, I suppose that already the OSNs in this subsystem are more odor specific than lALT associated OSNs. I conclude that this female-specific subsystem allows the worker honeybees to respond adequately to the enormous variety of odorants they experience during their lifetime. In manuscript II, I investigated the ion channel composition of mALT and lALT PNs and KCs in situ. This approach represents the first study dealing with the honeybee PN and KC ion channel composition under standard conditions in an intact brain preparation. With these recordings I set out to investigate the potential impact of intrinsic neuronal properties on the differences between m- and lALT PNs and on the sparse odor coding properties of KCs. In PNs, I identified a set of Na+ currents and diverse K+ currents depending on voltage and Na+ or Ca2+ that support relatively high spontaneous and odor response AP frequencies. This set of currents did not significantly differ between mALT and lALT PNs, but targets for potential modulation of currents leading to differences in AP frequencies were found between both types of PNs. In contrast to PNs, KCs have very prominent K+ currents, which are likely to contribute to the sparse response fashion observed in KCs. Furthermore, Ca2+ dependent K+ currents were found, which may be of importance for coincidence detection, learning and memory formation. Finally, I conclude that the differences in odor specificity between m- and lALT PNs are due to their synaptic input from different sets of OSNs and potential processing by LNs. The differences in spontaneous activity between the two tracts may be caused by different neuronal modulation or, in addition, also by interaction with LNs. The temporally sparse representation of odors in KCs is very likely based on the intrinsic KC properties, whereas general excitability and spatial sparseness are likely to be regulated through GABAergic feedback neurons. / Der Geruchssinn ist für die Honigbiene, Apis mellifera, von größter Bedeutung. Honigbienen kommunizieren olfaktorisch, sie können Nestgenossinnen und koloniefremde Honigbienen aufgrund des Geruchs unterscheiden, sie suchen und erkennen Nahrungsquellen olfaktorisch, und Drohnen (männliche Honigbienen) finden die Königin mit Hilfe des Geruchssinns. Deshalb dient die Honigbiene als exzellentes Modell für die Untersuchung hochentwickelter olfaktorischer Systeme. Honigbienen filtern Duftmoleküle mit ihren Antennen aus der Luft. Auf diesen Antennen sitzen Sensillen, die die olfaktorischen sensorischen Neurone (OSN) beinhalten. Drei verschiedene olfaktorische Sensillen existieren bei Arbeiterinnen: Sensilla trichoidea, Sensilla basiconica und Sensilla placodea. In diesen Sensillen sind olfaktorische Rezeptorproteine auf den Dendriten der OSN lokalisiert. Diese Duftrezeptoren wandeln die Duftinformationen in elektrische Informationen um. Die Axone von ca. 60.000 OSN ziehen in zwei Bündeln entlang der Antenne in das Gehirn. Bevor sie das erste olfaktorische Gehirnzentrum, den Antennallobus (AL), erreichen, spalten sie sich in vier distinkte Trakte (T1-T4) auf. Im AL verschalten sie auf 3.000-4.000 lokale Interneurone (LN) und auf etwa 900 Ausgangsneurone des AL, die Projektionsneurone (PN). Die axonalen Endigungen der OSN bilden mit Neuriten der PN und LN kugelförmige Strukturen, die so genannten Glomeruli. Die OSN aus den vier Trakten T1-T4 ziehen in vier zugehörige glomeruläre Cluster. LN verschalten die Information unter den AL Glomeruli, PN leiten olfaktorische Informationen zu den nächsten Gehirnstrukturen, den Pilzkörpern und dem lateralen Horn, weiter. Die Pilzkörper werden als Zentrum für sensorische Integration, Lernen und Gedächtnis gesehen. Die PN, die den AL mit dem Pilzkörper und dem lateralen Horn verbinden, verlaufen in Honigbienen parallel über zwei Bahnen, den medialen und den lateralen Antennallobustrakt (mALT/lALT), aber in entgegengesetzter Richtung. Dieser duale olfaktorische Signalweg wurde in dieser Ausprägung bisher nur in Hymenopteren gefunden. Interessanterweise prozessieren beide Trakte Informationen über die gleichen Düfte. Dabei sind mALT PN duftspezifischer und lALT PN haben höhere spontane Aktionspotentialfrequenzen sowie höhere Aktionspotentialfrequenzen in Antwort auf einen Duftreiz. Im Pilzkörper verschalten PN auf Kenyon Zellen (KC), die intrinsischen Neurone des Pilzkörpers. KC sind im Gegensatz zu PN fast nicht spontan aktiv und kodieren Informationen auf räumlicher und zeitlicher Ebene mit geringer Aktivität. Man spricht von einem so genannten "sparse code". Im ersten Manuskript meiner Doktorarbeit habe ich untersucht, ob die Unterschiede in der Spezifität der Duftantworten zwischen mALT und lALT PN zumindest zum Teil auf Unterschieden im sensorischen Eingang beruhen. Ich habe die axonalen Projektionen der OSN der S. basiconica in Honigbienen untersucht und mit den Projektionen von OSN in S. trichoidea und S. placodea verglichen. Dazu wurden die OSN in den S. basiconica anterograd mit Fluoreszenzmarkern gefärbt und mit mittels konfokaler Mikroskopie untersucht und quantifiziert. Die Axone von OSN aus S. basiconica ziehen präferentiell in das T3 Glomerulus Cluster, die Axone der anderen beiden Sensillentypen zeigen keine Präferenz für ein spezielles Cluster. Es wurde bereits gezeigt, dass die Glomeruli des T3 Clusters von mALT PN innerviert werden. Interessanterweise fehlen S. basiconica und Teile der T3 Glomeruli in Drohnen. Deshalb habe ich untersucht, ob die T3 Reduzierung in Drohnen mit einer Reduzierung der mALT Glomeruli einhergeht. Retrograde Färbungen der mALT PN in Drohnen zeigten, daß die Zahl der mALT Glomeruli in Drohnen gegenüber Arbeiterinnen deutlich reduziert ist. Die Präferenz der OSN der S. basiconica für das T3 Cluster und die reduzierte Anzahl von mALT Glomeruli in Drohnen weisen auf ein arbeiterinnenspezifisches olfaktorisches Subsystem hin, welches aus S. basiconica, T3 Glomeruli und einer Gruppe von mALT PN besteht. Da die mALT PN duftspezifischer als lALT PN sind, vermute ich, dass auch die OSN, die auf mALT PN verschalten, duftspezifischer antworten als OSN die auf lALT PN verschalten. Daraus schließe ich, daß dieses Subsystem den Arbeiterinnen ermöglicht, passend auf die enorme Breite an Duftstoffen zu reagieren, die diese im Laufe ihres arbeitsteiligen Lebens wahrnehmen müssen. Im zweiten Manuskript meiner Doktorarbeit habe ich die Ionenkanalzusammensetzung der mALT PN, der lALT PN und der KC in situ untersucht. Mein Ansatz stellt die erste Studie dar, die die Ionenkanäle von Neuronen in der Honigbiene unter Standardbedingungen an einer intakten Gehirnpräparation untersucht. Mit diesen Messungen versuche ich die potentiellen bioelektrischen Grundlagen für Unterschiede in der Informationskodierung in mALT PN, lALT PN und Kenyon Zellen zu ergründen. In PN konnte ich eine Gruppe von Na+ Ionenkanälen und Na+ abhängigen, Ca2+ abhängigen sowie spannungsabhängigen K+ Ionenkanälen identifizieren, die die Grundlagen für hohe, spontane Aktionspotentialfrequenzen und hohe Duftantwortfrequenzen schaffen. Diese Ströme unterschieden sich nicht grundsätzlich zwischen m- und lALT PN. Jedoch wurden potentielle Ziele für neuronale Modulation gefunden, welche zu unterschiedlichen Aktionspotentialfrequenzen zwischen PN der beiden Trakte führen könnten. Im Gegensatz zu den PN wurden in Kenyon Zellen in der Relation sehr starke K+ Ionenströme gemessen. Diese dienen sehr wahrscheinlich der schnellen Terminierung von Duftantworten, also dem Erzeugen des zeitlichen "sparse code". Außerdem wurden Ca2+ abhängige K+ Kanäle gefunden, die für Koinzidenzdetektion, Lernen und Gedächtnis von Bedeutung sein können. In der Gesamtsicht folgere ich aus meinen Ergebnissen, dass die Unterschiede in der Duftspezifizität zwischen m- und lALT PN überwiegend auf deren sensorischen Eingängen von unterschiedlichen Populationen von OSN und der Verarbeitung über lokale Interneuronen im AL beruht. Die Unterschiede in der Spontanaktivität zwischen mALT und lALT basieren sehr wahrscheinlich auf neuronaler Modulation und/oder Interaktion mit LN. Die zeitliche Komponente des "sparse code" in KC entsteht höchstwahrscheinlich durch die intrinsischen elektrischen Eigenschaften der KC, wohingegen die generelle Erregbarkeit und der räumliche "sparse code" mit großer Wahrscheinlichkeit auf der Regulation durch GABAerge Neurone beruht.

Page generated in 0.0712 seconds