• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • Tagged with
  • 10
  • 10
  • 10
  • 10
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Unconventional forms of synaptic plasticity in the hippocampus and the striatum

Liu, Zhi 11 1900 (has links)
Synaptic transmission occurs as a result of either a spontaneous release of presynaptic vesicles or a batch release of presynaptic vesicles driven by action potentials. The physiological consequence of synaptic transmission driven by different patterns and frequencies of presynaptic stimulation has been extensively investigated. However, the physiological nature, mechanism as well as relevance of prolonged presynaptic stimulation have been poorly characterized. In this dissertation, I present three projects in which prolonged stimulation of synaptic transmission in different forms and different brain regions was studied for its effect on synaptic transmission, mechanisms and physiological relevance. In the first project, prolonged electrical stimulation (100 sec) at high frequency induced a deep synaptic depression in acute hippocampal slices, followed by a recovery of synaptic transmission after ~15 min. The deep synaptic depression was attributed to a complete depletion of presynaptic vesicle pools. In the second project, attempts were made to characterize the mechanism of nuclear activation of gene transcription induced by prolonged electrical stimulation (100 sec). Our results demonstrated that reduced inactivation of non-L-type calcium channels failed to provide calcium required for gene transcription, leaving the activation of gene transcription a selective function for L-type calcium channels. In the third project, we sought to study the physiological relevance of enhanced miniature events of inhibitory synapses induced by prolonged chemical stimulation. We showed that prolonged application (2 min) of nicotine to the striatal slice enhanced the frequency of miniature inhibitory currents that was accompanied with a reduction in the amplitude of evoked response. This reduction in the amplitude of evoked responses was ascribed to a compromised action potential invasion of presynaptic terminals possibly due to inactivation of sodium channels resulting from nicotine-induced depolarization. To summarize, prolonged stimulation of presynaptic vesicle release imposes significant influence upon neuron-to-neuron communication, with distinct mechanisms in different brain regions.
2

Unconventional forms of synaptic plasticity in the hippocampus and the striatum

Liu, Zhi 11 1900 (has links)
Synaptic transmission occurs as a result of either a spontaneous release of presynaptic vesicles or a batch release of presynaptic vesicles driven by action potentials. The physiological consequence of synaptic transmission driven by different patterns and frequencies of presynaptic stimulation has been extensively investigated. However, the physiological nature, mechanism as well as relevance of prolonged presynaptic stimulation have been poorly characterized. In this dissertation, I present three projects in which prolonged stimulation of synaptic transmission in different forms and different brain regions was studied for its effect on synaptic transmission, mechanisms and physiological relevance. In the first project, prolonged electrical stimulation (100 sec) at high frequency induced a deep synaptic depression in acute hippocampal slices, followed by a recovery of synaptic transmission after ~15 min. The deep synaptic depression was attributed to a complete depletion of presynaptic vesicle pools. In the second project, attempts were made to characterize the mechanism of nuclear activation of gene transcription induced by prolonged electrical stimulation (100 sec). Our results demonstrated that reduced inactivation of non-L-type calcium channels failed to provide calcium required for gene transcription, leaving the activation of gene transcription a selective function for L-type calcium channels. In the third project, we sought to study the physiological relevance of enhanced miniature events of inhibitory synapses induced by prolonged chemical stimulation. We showed that prolonged application (2 min) of nicotine to the striatal slice enhanced the frequency of miniature inhibitory currents that was accompanied with a reduction in the amplitude of evoked response. This reduction in the amplitude of evoked responses was ascribed to a compromised action potential invasion of presynaptic terminals possibly due to inactivation of sodium channels resulting from nicotine-induced depolarization. To summarize, prolonged stimulation of presynaptic vesicle release imposes significant influence upon neuron-to-neuron communication, with distinct mechanisms in different brain regions.
3

Unconventional forms of synaptic plasticity in the hippocampus and the striatum

Liu, Zhi 11 1900 (has links)
Synaptic transmission occurs as a result of either a spontaneous release of presynaptic vesicles or a batch release of presynaptic vesicles driven by action potentials. The physiological consequence of synaptic transmission driven by different patterns and frequencies of presynaptic stimulation has been extensively investigated. However, the physiological nature, mechanism as well as relevance of prolonged presynaptic stimulation have been poorly characterized. In this dissertation, I present three projects in which prolonged stimulation of synaptic transmission in different forms and different brain regions was studied for its effect on synaptic transmission, mechanisms and physiological relevance. In the first project, prolonged electrical stimulation (100 sec) at high frequency induced a deep synaptic depression in acute hippocampal slices, followed by a recovery of synaptic transmission after ~15 min. The deep synaptic depression was attributed to a complete depletion of presynaptic vesicle pools. In the second project, attempts were made to characterize the mechanism of nuclear activation of gene transcription induced by prolonged electrical stimulation (100 sec). Our results demonstrated that reduced inactivation of non-L-type calcium channels failed to provide calcium required for gene transcription, leaving the activation of gene transcription a selective function for L-type calcium channels. In the third project, we sought to study the physiological relevance of enhanced miniature events of inhibitory synapses induced by prolonged chemical stimulation. We showed that prolonged application (2 min) of nicotine to the striatal slice enhanced the frequency of miniature inhibitory currents that was accompanied with a reduction in the amplitude of evoked response. This reduction in the amplitude of evoked responses was ascribed to a compromised action potential invasion of presynaptic terminals possibly due to inactivation of sodium channels resulting from nicotine-induced depolarization. To summarize, prolonged stimulation of presynaptic vesicle release imposes significant influence upon neuron-to-neuron communication, with distinct mechanisms in different brain regions. / Medicine, Faculty of / Graduate
4

The Effect of the Voltage-Gated Calcium Channel Blocker, Nifedipine, on Kindling and Kindling-Induced Mossy Fibre Sprouting / Effects of Nifedipine on Kindling and Mossy Fibre Sprouting

Vaccarella, Liezanne 06 1900 (has links)
Kindling epileptogenesis has been associated with a number of different forms of neuroplasticity in the hippocampus, including mossy fibre sprouting and an increase in both intracellular calcium and zinc. The purpose of this thesis was to determine whether interfering with the influx of calcium via the voltage gated calcium channels would interfere with kindling- induced plasticity. Both kindled and control rats were injected with either 5 or 25mg/kg of the L-type voltage gated calcium channel blocker, nifedipine, or a control vehicle, DMSO (dimethylsulfoxide). The kindled groups received a kindling stimulation twice a day for 11 days. It was revealed that both doses of nifedipine significantly increased afterdischarge duration (p<0.001) and furthermore, both doses of nifedipine were capable of significantly interfering with the rate of kindling (p<0.001). Three weeks following the last kindling stimulation, rats were perfused and brain tissue was processed according to the Timm method. The density of Timm granules, an indication of the level of intracellular zinc in the mossy fibre pathway, was quantified. The results of this analysis revealed that 25mg/kg of nifedipine is capable of significantly reducing the amount of intracellular zinc in both the IML (p<0.04) and the CA3 (p<0.01) region of the mossy fibre pathway, regardless of whether the rats had received kindling stimulations or not. These results provide support for the notion that nifedipine (5 or 25mg/kg) is an effective anticonvulsant agent. These results also suggest that, at a sufficient dose (25mg/kg), nifedipine can reduce the amount of intracellular zinc in the mossy fibre pathway in both kindled and non-kindled animals, suggesting that nifedipine may be a useful therapeutic agent for pathologies that have been associated with zinc-induced neurotoxicity. / Thesis / Master of Science (MSc)
5

Mechanisms inhibiting sympathetic neurotransmitter release during gastrointestinal inflammation

Motagally, MOHAMED 04 September 2008 (has links)
Inflammatory bowel disease (IBD) alters neuronal regulation of the gastrointestinal (GI) tract. The superior mesenteric ganglia (SMG) contain sympathetic neurons that modulate GI functions such, as motility and blood flow. IBD reduces the release of noradrenaline, a sympathetic neurotransmitter. We hypothesized that the reduction in NA release is due to inhibition of voltage-gated calcium current (ICa), as calcium influx is a regulator of neurotransmitter release. We also hypothesized that tumor necrosis factor α (TNFα), a proinflammatory cytokine elevated during IBD, can also inhibit the ICa of SMG neurons. Therefore, we compared ICa amplitude in neurons from normal mice and mice with dextran sulphate sodium (DSS; 5% w/v)-induced colitis. Neurons dissociated from the SMG were cultured overnight and changes to ICa were investigated using electrophysiological, Ca2+ imaging, PCR and neurotransmitter release techniques. Colitis significantly reduced ICa of SMG neurons by selectively inhibiting N-type Ca2+ channels. This was accompanied by a reduction in mRNA encoding the N-type channel alpha subunit (CaV 2.2) and a rightward shift in the voltage dependence of activation of ICa. Colitis reduced the NA release from the colon and jejunum. Depolarization-induced release of tritiated-NA was inhibited by ω-Conotoxin GVIA (300 nM). These results suggest that the changes in VGCC observed at the cell bodies of SMG neurons were also occurring at the nerve terminals during colitis. Similar experimental techniques were performed using SMG neurons incubated overnight in TNFα (1nM). TNFα decreased ICa and depolarization-induced Ca2+ influx in SMG neurons. Similar to DSS-induced colitis, the reduction in ICa was limited to N-type Ca2+ channels. Preincubation of neurons with SC 514 (20μM) and Bay 11 7082 (1µM), inhibitors of nuclear factor kappa B signaling, prevented the reduction in ICa. Preincubation with the p38 MAPK inhibitor, PD 169316 (30µM), recovered a smaller portion of the reduction in Ca2+ influx. These data suggest that DSS colitis and TNFα inhibit N-type VGCC ICa in sympathetic neurons and identify a novel role for NF-κB and p38 MAPK in the regulation of neurotransmitter release. These findings also suggest that DSS colitis inhibits NA release by altering sympathetic N-type VGCC in the colon and jejunum. / Thesis (Master, Physiology) -- Queen's University, 2008-09-02 12:06:20.438
6

Molecular evolution of voltage-gated calcium channels of L and N types and their genomic regions

Widmark, Jenny January 2012 (has links)
The expansion of the voltage-gated calcium channel alpha 1 subunit families (CACNA1) of L and N types was investigated by combining phylogenetic analyses (neighbour-joining and maximum likelihood) with chromosomal data. Neighbouring gene families were analysed to see if the chromosomal regions duplicated through whole genome doublings in vertebrates. Results show that both types of CACNA1 expanded in two ancient whole genome duplications as parts of larger genomic regions. Many gene families in these regions obtained copies in an additional teleost-specific genome duplication. This diversification of CACNA1 genes probably contributed to evolutionary innovations in nervous system function.
7

Behavioral and Functional Analysis of a Calcium Channelopathy in Caenorhaditis elegans

Huang, Yung-Chi 04 April 2017 (has links)
The brain network is a multiscale hierarchical organization from neurons and local circuits to macroscopic brain areas. The precise synaptic transmission at each synapse is therefore crucial for neural communication and the generation of orchestrated behaviors. Activation of presynaptic voltage-gated calcium channels (CaV2) initiates synaptic vesicle release and plays a key role in neurotransmission. In this dissertation, I have aimed to uncover how CaV2 activity affects synaptic transmission, circuit function and behavioral outcomes using Caenorhabditis elegans as a model. The C. elegans genome encodes an ensemble of highly conserved neurotransmission machinery, providing an opportunity to study the molecular mechanisms of synaptic function in a powerful genetic system. I identified a novel gain of function CaV2α1 mutation that causes CaV2 channels to activate at a lower membrane potential and slow the inactivation. Cell-specific expression of these gain-of-function CaV2 channels is sufficient to hyper-activate neurons of interest, offering a way to study their roles in a given circuit. CaV2(gf) mutants display behavioral hyperactivity and an excitation-dominant synaptic transmission. Imbalanced excitation and inhibition of the nervous system have been associated with several neurological disorders, including Familial Hemiplegic Migraine type 1 (FHM1) which is caused by gain- of-function mutations in the human CaV2.1α1 gene. I showed that animals carrying C. elegans CaV2α1 transgenes with corresponding human FHM1 mutations recapitulate the hyperactive behavioral phenotype exhibited by CaV2(gf) mutants, strongly suggesting the molecular function of CaV2 channels is highly conserved from C. elegans to human. Through performing a genome-wide forward genetic screen looking for CaV2α(gf) suppressors, we isolated new alleles of genes that required for CaV2 trafficking, localization and function. These regulators include subunits of CaV2 channel complex, components of synaptic and dense core vesicle release machinery as well as predicted extracellular proteins. Taken together, this work advances the understanding of CaV2 malfunction at both cellular and circuit levels, and provides a genetically amenable model for neurological disorders associated with excitation-inhibition imbalance. Additionally, through identifying regulators of CaV2, this research provides new avenues for understanding the CaV2 channel mediated neurotransmission and potential pharmacological targets for the treatments of calcium channelopathies.
8

RESPONSE OF BONE CELLS TO DIFFUSE MICRODAMAGE INDUCED CALCIUM EFFLUX

Jung, Hyungjin 06 September 2017 (has links)
No description available.
9

P/Q Type Calcium Channel Cav2.1 Defines a Unique Subset of Glomeruli in the Mouse Olfactory Bulb

Pyrski, Martina, Tusty, Mahbuba, Eckstein, Eugenia, Oboti, Livio, Rodriguez-Gil, Diego J., Greer, Charles A., Zufall, Frank 04 September 2018 (has links)
Voltage-gated calcium (Cav) channels are a prerequisite for signal transmission at the first olfactory sensory neuron (OSN) synapse within the glomeruli of the main olfactory bulb (MOB). We showed previously that the N-type Cav channel subunit Cav2.2 is present in the vast majority of glomeruli and plays a central role in presynaptic transmitter release. Here, we identify a distinct subset of glomeruli in the MOB of adult mice that is characterized by expression of the P/Q-type channel subunit Cav2.1. Immunolocalization shows that Cav2.1+ glomeruli reside predominantly in the medial and dorsal MOB, and in the vicinity of the necklace glomerular region close to the accessory olfactory bulb. Few glomeruli are detected on the ventral and lateral MOB. Cav2.1 labeling in glomeruli colocalizes with the presynaptic marker vGlut2 in the axon terminals of OSNs. Electron microscopy shows that Cav2.1+ presynaptic boutons establish characteristic asymmetrical synapses with the dendrites of second-order neurons in the glomerular neuropil. Cav2.1+ glomeruli receive axonal input from OSNs that express molecules of canonical OSNs: olfactory marker protein, the ion channel Cnga2, and the phosphodiesterase Pde4a. In the main olfactory epithelium, Cav2.1 labels a distinct subpopulation of OSNs whose distribution mirrors the topography of the MOB glomeruli, that shows the same molecular signature, and is already present at birth. Together, these experiments identify a unique Cav2.1+ multiglomerular domain in the MOB that may form a previously unrecognized olfactory subsystem distinct from other groups of necklace glomeruli that rely on cGMP signaling mechanisms.
10

Novel tricycloundecane derivatives as potential N-methyl-Daspartate receptor and calcium channel inhibitors for neuroprotection

Egunlusi, Ayodeji Olatunde January 2014 (has links)
>Magister Scientiae - MSc / This study focused on the synthesis of a series of novel tricycloundecane derivatives and evaluation of these compounds for neuroprotection using the fluorescent ratiometric calcium assay that indicates the ability of the test compounds to inhibit NMDA receptors and VGCC. The cycloaddition reaction between p-benzoquinone and monomerised dicyclopentadiene yielded tricycloundeca- 4,9-diene-3,6-dione which was used as the base structure and further derivatised. These derivatives were conjugated with benzylamine to form a series of imines and amines. A total of 10 compounds were synthesised for evaluation of inhibition of calcium influx through NMDA receptor channels and voltage-gated calcium channels. The structures were confirmed using NMR, IR and MS. On the proton NMR, the characteristic AB-quartet system was observed in the region of 1-2 ppm for all the compounds and the aromatic moiety was observed between 6.5-7.5 ppm for the novel polycyclic amines. These, with other functional groups, were used to confirm the individual structures

Page generated in 0.0736 seconds