• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 6
  • 1
  • 1
  • 1
  • Tagged with
  • 35
  • 35
  • 19
  • 8
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The magnetic phase diagram of high quality superconducting YBa←2Cu←3O←7←#delta# single crystals

Pinfold, Steven January 1997 (has links)
No description available.
2

Conceptual Assessment of an Oblique Flying Wing Aircraft Including Control and Trim Characteristics

Plumley, Ryan W. 03 April 2008 (has links)
A method was developed to assist with the understanding of a unique configuration and investigate some of its stability and control attributes. Oblique wing aircraft concepts are a design option that is well understood, but has yet to be used in a production aircraft. Risk involved in choosing such a design can be averted through additional knowledge early in the concept evaluation phase. Analysis tools commonly used in early conceptual level analysis were evaluated for applicability to a non-standard aircraft design such as an oblique flying wing. Many tools used in early analyses make assumptions that are incompatible with the slewed wing configuration of the vehicle. Using a simplified set of tools, an investigation of a unique configuration was done as well as showing that the aircraft could be trimmed at given conditions. Wave drag was investigated to determine benefits for an oblique flying wing. This form of drag was reduced by the distribution of volume afforded by the slewing of the aircraft's wing. Once a reasonable concept was developed, aerodynamic conditions were investigated for static stability of the aircraft. Longitudinal and lateral trim were established simultaneously due to its asymmetric nature. / Master of Science
3

Numerical Wing/Store Interaction Analysis of a Parametric F16 Wing

Cattarius, Jens 29 September 1999 (has links)
A new numerical methodology to examine fluid-structure interaction of a wing/pylon/store system has been developed. The aeroelastic equation of motion of the complete system is solved iteratively in the time domain using a two-entity numerical code comprised of ABAQUS/Standard and the Unsteady-Vortex-Lattice Method. Both codes communicate through an iterative handshake procedure during which displacements and air loads are updated. For each increment in time the force/displacement equilibrium is found in this manner. The wing, pylon, and store data considered in this analysis are based on an F16 configuration that was identified to induce flutter in flight at subsonic speeds. The wing structure is modeled as an elastic plate and pylon and store are rigid bodies. The store body is connected to the pylon through an elastic joint exercising pitch and yaw degrees of freedom. Vortex-Lattice theory featuring closed ring-vortices and continuous vortex shedding to form the wakes is employed to model the aerodynamics of wing, store, and pylon. The methodology was validated against published data demonstrating excellent agreement with documented key phenomena of fluid-structure iteration. The model correctly predicts the effects of the pylon induced lateral flow disruption as well as wing-tip-vortex effects. It can identify the presence of aerodynamic interference between the store, pylon, and wing wakes and examine its significance with respect to the pressure and lift forces on the participating bodies. An elementary flutter study was undertaken to examine the dynamic characteristics of a stiff production pylon at near-critical airspeeds versus those of a soft-in-pitch pylon. The simulation reproduced the stabilizing effect of the stiffness reduction in the pitch motion. This idea is based on the concept of the decoupler pylon, introduced by Reed and Foughner in 1978 and flight tested in the early 1980's. NOTE: (3/07) An updated copy of this ETD was added after there were patron reports of problems with the file. / Ph. D.
4

Aeroelastic Analysis of Membrane Wings

Banerjee, Soumitra Pinak 04 December 2007 (has links)
The physics of flapping is very important in the design of MAVs. As MAVs cannot have an engine that produces the amount of thrust required for forward flight, and yet be light weight, harnessing thrust and lift from flapping is imperative for its design and development. In this thesis, aerodynamics of pitch and plunge are simulated using a 3-D, free wake, vortex lattice method (VLM), and structural characteristics of the wing are simulated as a membrane supported by a rigid frame. The aerodynamics is validated by comparing the results from the VLM model for constant angle of attack flight, pitching flight and plunging flight with analytical results, existing 2-D VLM and a doublet lattice method. The aeroelasticity is studied by varying parameters affecting the flow as well as parameters affecting the structure. The parametric studies are performed for cases of constant angle of attack, plunge and, pitch and plunge. The response of the aeroelastic model to the changes in the parameters are analyzed and documented. The results show that the aerodynamic loads increase for increased deformation, and vice-versa. For a wing with rigid boundaries supporting a membranous structure with a step change in angle of attack, the membrane oscillates about the steady state deformation and influence the loads. For prescribed oscillations in pitch and plunge, the membrane deformations and loads transition into a periodic steady state. / Master of Science
5

Transição de fase quântica de sistema 2D em rede de vórtices / Quantum phase transition of 2D system in a vortex lattice

Chaviguri, Jhonny Richard Huamani 20 July 2016 (has links)
Neste trabalho estudamos um sistema bidimensional composto de duas espécies atômicas condensadas, uma delas contendo uma rede de vórtices. Analogamente ao modelo desenvolvido para tratar de átomos ultrafrios em redes ópticas, mapeamos o Hamiltoniano do nosso sistema com o Hamiltoniano do modelo Bose-Hubbard (BH), com o potencial periódico da rede advindo da interação de campo médio entre as duas espécies. A variação do comprimento de espalhamento atômico permite alterar as propriedades do potencial confinante, com a indução da transição de fase quântica na espécie aprisionada nos vórtices. O novo aspecto trazido pela rede de vórtices advém dos seus modos de excitação de baixa energia, os modos de Tkachenko. Consideramos os efeitos da dinâmica própria desse potencial sobre a espécie aprisonada através de um modelo BH efetivo, com novos valores para interação local e tunelamento, além de um termo adicional de interação de longo alcance, mediada pelos modos da rede. Além de complementar os estudos com redes ópticas estáticas, a proposta teórica desenvolvida apresenta grande viabilidade experimental no contexto das técnicas atuais para manipulação de átomos ultrafrios. / In this work we consider a two dimensional system composed of two condensed atomic species, one containing a vortex lattice. Analogously to the model used to describe ultracold atoms in optical lattices, we mapped our system Hamiltonian in the Hamiltonian of the Bose-Hubbard (BH) model, with the periodic lattice potential arising from the meanfield interaction between the two species. The variation of the atomic scattering length allow us to change the properties of the confining potential, to induce the quantum phase transition in the species trapped in the vortices. The new aspect brought by the vortex lattice comes with its low energy normal modes, the Tkachenko modes. We considered the effects of such dynamic potential over the confined species thought an effective BH model, with new values for the local interaction and tunneling parameters, besides an additional long-range interaction term mediated by the lattice modes. Our theoretical proposal goes beyond the studies with static optical lattice. Additionally, it has great feasibility in the current context of ultra-cold atoms experimental techniques.
6

Modelo numérico para simulação da resposta aeroelástica de asas fixas. / Numerical model for the simulation of the aeroelastic response of fixed wings.

Benini, Guilherme Ribeiro 28 June 2002 (has links)
Um modelo numérico para simulação da resposta aeroelástica de asas fixas é proposto. A estratégia adotada no trabalho é a de tratar a aerodinâmica e a dinâmica estrutural separadamente e então acoplá-las na equação de movimento. A caracterização dinâmica de uma asa protótipo é feita pelo método dos elementos finitos e a equação de movimento é escrita em função das coordenadas modais. O carregamento aerodinâmico não-estacionário é determinado pelo método de malha de vórtices. A troca de informações entre as malhas estrutural e aerodinâmica é feita através do método de interpolação por splines de superfície e a equação de movimento é resolvida iterativamente no domínio do tempo, utilizando-se um método preditor-corretor. As teorias de aerodinâmica, dinâmica estrutural e do acoplamento entre elas são apresentadas separadamente, juntamente com os respectivos resultados obtidos. A resposta aeroelástica da asa protótipo é representada por curvas de deslocamentos modais em função do tempo para várias velocidades de vôo e a ocorrência de flutter é verificada quando estas curvas divergem (i.e. as amplitudes aumentam progressivamente). Transformadas de Fourier destas curvas mostram o acoplamento de freqüências característico do fenômeno de flutter. / A numerical model for the simulation of the aeroelastic response of fixed wings is proposed. The methodology used in the work is to treat the aerodynamic and the structural dynamics separately and then couple them in the equation of motion. The dynamic characterization of a prototype wing is done by the finite element method and the equation of motion is written in modal coordinates. The unsteady aerodynamic loads are predicted using the vortex lattice method. The exchange of information between the aerodynamic and structural meshes is done by the surface splines interpolation scheme, and the equation of motion is solved interactively in the time domain, employing a predictor-corrector method. The aerodynamic and structural dynamics theories, and the methodology to couple them, are described separately, together with the corresponding obtained results. The aeroelastic response of the prototype wing is represented by time histories of the modal coordinates for different airspeeds, and the flutter occurrence is verified when the time histories diverge (i.e. the amplitudes keep growing). Fast Fourier Transforms of these time histories show the coupling of frequencies, typical of the flutter phenomenon.
7

Rapidly Rotating Ultracold Atoms In Harmonic Traps

Ghazanfari, Nader 01 June 2011 (has links) (PDF)
In this study we investigate the properties of trapped atoms subjected to rapid rotations. The study is divided into two distinct parts, one for fermions, another for bosons. In the case of the degenerate Fermi gas we explore the density structure of non-interacting cold atoms when they are rotated rapidly. On the other hand, for rapidly rotating two component Bose condensate, we search for new lattice structures in the presence of contact and dipolar interactions. First, the density structure of Fermi gases in a rotating trap is investigated. We focus on the anisotropic trap case, in which two distinct regimes, two and one dimensional regimes, depending on rotation frequency and anisotropy are observed. Two regimes can be illustrated by a simple description of maximum number of states between two Landau levels, which is strongly related to the dimensionality of the system. The regimes are separated from each other by a minimum point in this description. For small anisotropy values the density profiles show a step structure where each step is demonstrated by an elliptical plateau. Each plateau represents a Landau level with a constant density. The local density approximation describes the two dimensional regime with a perfect similarity in the structure of fermion density. The case for one dimensional regime is a little different from the two dimensional case. For large anisotropy values the Friedel oscillation is the dominant aspect of the density profiles. The density profiles show gaussian structure along the direction of strong trapping, and a semicircular form with prominent oscillations along the weak confining direction. Again, the system is nicely described by local density approximation in this regime. A smooth crossover between two regimes is observed, with a switching from a step structure profile to a soft edge transition with Friedel oscillations. At finite temperatures, the step structures are smeared out in two dimension. In one dimensional regime the Friedel oscillations are cleaned as soon as the temperature is turned on. The second part of the study is devoted to the investigation of different lattice structures in two component Bose condensates subjected to very fast rotation, this time in the presence of interactions. We explore the existence of new vortex lattice structures for dipolar two component condensates scanning a wide range of interaction strengths. We introduce a phase diagram as a function of intra and inter-component interactions showing different type of vortex lattice structures. New types of lattice structures, overlapped square and overlapped rectangular, emerge as a result of dipolar interactions and s-wave interaction for a two component condensate. The region where the attractive inter-component interactions dominate the repulsive interactions, the overlapped lattices are formed. The intra-component interactions, which defines the behavior of each component inside, result in different type of lattices by changing the strength of interactions. Two different limits of phase diagram reproduce the results of ordinary two component and dipolar one component Bose condensates. The results of calculation are in agreement with the results of previous studies for two regimes.
8

Method Development for Computer Aided Engineering for Aircraft Conceptual Design

Bérard, Adrien January 2008 (has links)
<p>This thesis presents the work done to implement new computational tools and methods dedicated to aircraft conceptual design sizing and optimization. These tools have been exercised on different aircraft concepts in order to validate them and assess their relevance and applicability to practical cases.First, a geometry construction protocol has been developed. It is indeed essential to have a geometry description that supports the derivation of all discretizations and idealizations used by the different analysis modules (aerodynamics, weights and balance, stability and control, etc.) for which an aircraft concept is evaluated. The geometry should also be intuitive to the user, general enough to describe a wide array of morphologies and suitable for optimization. All these conditions are fulfilled by an appropriate parameterization of the geometry. In addition, a tool named CADac (Computer Aided Design aircraft) has been created in order to produce automatically a closed and consistent CAD solid model of the designs under study. The produced CAD model is easily meshable and therefore high-fidelity Computational Fluid Dynamics (CFD) computations can be performed effortlessly without need for tedious and time-consuming post-CAD geometry repair.Second, an unsteady vortex-lattice method based on TORNADO has been implemented in order to enlarge to scope of flight conditions that can be analyzed. It has been validated satisfactorily for the sudden acceleration of a flat plate as well as for the static and dynamic derivatives of the Saab 105/SK 60.Finally, a methodology has been developed to compute quickly in a semi-empirical way the buffet envelope of new aircraft geometries at the conceptual stage. The parameters that demonstrate functional sensitivity to buffet onset have been identified and their relative effect quantified. The method uses a combination of simple sweep theory and fractional change theory as well as the buffet onset of a seed aircraft or a provided generic buffet onset to estimate the buffet envelope of any target geometry. The method proves to be flexible and robust enough to predict within mainly 5% (and in any case 9%) the buffet onset for a wide variety of aircrafts, from regional turboprop to long-haul wide body or high-speed business jets.This work was done within the 6<sup>th</sup> European framework project SimSAC (Simulating Stability And Control) whose task is to create a multidisciplinary simulation environment named CEASIOM (Computerized Environment for Aircraft Synthesis and Integrated Optimization Methods), oriented toward stability and control and specially suited for aircraft conceptual design sizing and optimization.</p> / SimSAC
9

Numerical techniques for the design and prediction of performance of marine turbines and propellers

Xu, Wei, 1986- 21 December 2010 (has links)
The performance of a horizontal axis marine current turbine is predicted by three numerical methods, vortex lattice method MPUF-3A, boundary element method PROPCAV and a commercial RANS solver FLUENT. The predictions are compared with the experimental measurements for the same turbine model. A fully unsteady wake alignment is utilized in order to model the realistic wake geometry of the turbine. A lifting line theory based method is developed to produce the optimum circulation distribution for turbines and propellers and a lifting line theory based database searching method is used to achieve the optimum circulation distribution for tidal turbines. A nonlinear optimization method (CAVOPT-3D) and another database-searching design method (CAVOPT-BASE) are utilized to design the blades of marine current turbines and marine propellers. A design procedure for the tidal turbine is proposed by using the developed methods successively. Finally, an interactive viscous/potential flow method is utilized to analyze the effect of nonuniform inflow on the performance of tidal turbines. / text
10

Modelo numérico para simulação da resposta aeroelástica de asas fixas. / Numerical model for the simulation of the aeroelastic response of fixed wings.

Guilherme Ribeiro Benini 28 June 2002 (has links)
Um modelo numérico para simulação da resposta aeroelástica de asas fixas é proposto. A estratégia adotada no trabalho é a de tratar a aerodinâmica e a dinâmica estrutural separadamente e então acoplá-las na equação de movimento. A caracterização dinâmica de uma asa protótipo é feita pelo método dos elementos finitos e a equação de movimento é escrita em função das coordenadas modais. O carregamento aerodinâmico não-estacionário é determinado pelo método de malha de vórtices. A troca de informações entre as malhas estrutural e aerodinâmica é feita através do método de interpolação por splines de superfície e a equação de movimento é resolvida iterativamente no domínio do tempo, utilizando-se um método preditor-corretor. As teorias de aerodinâmica, dinâmica estrutural e do acoplamento entre elas são apresentadas separadamente, juntamente com os respectivos resultados obtidos. A resposta aeroelástica da asa protótipo é representada por curvas de deslocamentos modais em função do tempo para várias velocidades de vôo e a ocorrência de flutter é verificada quando estas curvas divergem (i.e. as amplitudes aumentam progressivamente). Transformadas de Fourier destas curvas mostram o acoplamento de freqüências característico do fenômeno de flutter. / A numerical model for the simulation of the aeroelastic response of fixed wings is proposed. The methodology used in the work is to treat the aerodynamic and the structural dynamics separately and then couple them in the equation of motion. The dynamic characterization of a prototype wing is done by the finite element method and the equation of motion is written in modal coordinates. The unsteady aerodynamic loads are predicted using the vortex lattice method. The exchange of information between the aerodynamic and structural meshes is done by the surface splines interpolation scheme, and the equation of motion is solved interactively in the time domain, employing a predictor-corrector method. The aerodynamic and structural dynamics theories, and the methodology to couple them, are described separately, together with the corresponding obtained results. The aeroelastic response of the prototype wing is represented by time histories of the modal coordinates for different airspeeds, and the flutter occurrence is verified when the time histories diverge (i.e. the amplitudes keep growing). Fast Fourier Transforms of these time histories show the coupling of frequencies, typical of the flutter phenomenon.

Page generated in 0.0396 seconds