• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 5
  • Tagged with
  • 44
  • 44
  • 24
  • 21
  • 16
  • 14
  • 9
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Erupción subpliniana de abril de 2015 del volcán Calbuco, Andes del Sur: Génesis, dinámica y parámetros físicos de la columna eruptiva y depósitos piroclásticos de caída asociados

Segura Acevedo, Andrea Jacqueline January 2016 (has links)
Geóloga / El volcán Calbuco inició un nuevo ciclo eruptivo el día 22 de abril de 2015, generando dos pulsos subplinianos. La zona NE de la ribera del Lago Llanquihue, ubicada a los pies del volcán, fue afectada por los depósitos piroclásticos y laháricos dejados por esta erupción. Este evento fue particular al tener señales precursoras de baja magnitud, mostrando un aumento claro de sismicidad solo tres horas antes del inicio de la actividad eruptiva. Además, a diferencia de erupciones pasadas, el ciclo eruptivo principal se desarrolló en un lapso de tan solo 12 horas. En este trabajo se estudió el depósito piroclástico de caída emitido por la erupción del volcán Calbuco, realizando un trabajo de campo y gabinete que permitió su caracterización a macro y micro escala, con el objetivo de determinar la dinámica eruptiva y estimar los principales parámetros físicos de este evento. El depósito de caída fue dividido en cuatro niveles, compuestos principalmente por escorias de composición andesítico basáltica y fragmentos líticos. Los fragmentos juveniles presentan variaciones texturales y morfológicas, teniendo mayor densidad, menor vesicularidad y mayor contenido de microlitos hacia el techo del depósito. Al realizar curvas isópacas de los espesores totales del depósito, se estimó un volumen total de 0,38 km3. Considerando este volumen y las alturas máximas de las columnas eruptivas de cada pulso (15 y 17 km), se infiere que la erupción tuvo un Índice de Explosividad Volcánica 4, y una magnitud e intensidad 4,6 y 10,2 respectivamente. Dada la morfología y textura de los fragmentos juveniles, y teniendo en cuenta la baja presencia de fragmentos líticos (10% vol. como máximo), se concluye que esta erupción tuvo un origen magmático, con un bajo aporte de agua externa hacia el final del segundo pulso. Además, se infiere que el primer pulso eruptivo habría generado el nivel basal, correspondiente a aproximadamente un 15% del volumen total emitido, mientras que el segundo pulso habría emitido un 85%, representado por los tres niveles restantes. Dadas las altas probabilidades de que el volcán Calbuco inicie un nuevo ciclo eruptivo dentro de las próximas décadas, se sugiere incrementar la red de monitoreo volcánico y continuar con la educación sobre el riesgo volcánico en la población aledaña al volcán.
22

Evolución de volátiles y elementos traza ligeros, a través de inclusiones vítreas, y su rol en la erupción de 2015 del volcán Calbuco, X Región, Chile

Astudillo Manosalva, Daniel Francisco January 2018 (has links)
Geólogo / La erupción del año 2015 del volcán Calbuco, en el sur de Chile, presentó una serie de problemáticas de carácter científico y social, especialmente al haber ocurrido sin ningún tipo de deformación superficial y escasos precursores sísmicos hasta pocas horas antes de que ocurriera. Gracias a un análisis de termobarometría, en conjunto con evidencias geofísicas y geologicas en otros estudios, se pudo establecer que el volcán presenta una cámara magmática a una profundidad cercana a los 7 km y 950°C de temperatura, antes de la erupción. Utilizando un análisis de inclusiones vítreas en los minerales de los productos piroclásticos de la erupción se pudo obtener una caracterización geoquímica del magma y se identificaron los distintos procesos que ocurrieron previo al emplazamiento de este en la cámara y durante su cristalización. El magma posee una composición andesítica-basáltica, mientras que la fase fundida presenta una composición esencialmente dacítica. El magma se encontraría saturado en los volátiles H2O, CO2 y SO2, enriquecido en elementos trazas ligeros de Li y B y en halógenos como Cl y F. Su particular composición, en comparación con el resto de los volcanes de este sector de la Zona Volcánica Sur, estaría en gran medida asociada a la presencia de al menos una cámara magmática saturada en agua en la corteza profunda, donde ocurriría cristalización de anfíbol. Una interacción del magma con las paredes de la cámara, donde destaca un posible proceso de asimilación cortical que involucra metapelitas, sería significativa para las características de la cámara magmática y su evolución. Se sugiere que una desestabilización de las paredes de la cámara producto de este proceso de asimilación y una concentración de volátiles exsueltos en la cámara, debido a first y second boiling, corresponderían a dos procesos importantes dentro de la dinámica pre-eruptiva de la cámara magmática.
23

Evolución geoquímica e isotópica de DE He, Sr y Pb en las rocas del Complejo Volcánico Caviahue-Copahue, Chile-Argentina

Sánchez Bowen, Juan Ignacio January 2016 (has links)
Geólogo / El Complejo Volcánico Caviahue-Copahue (CVCC) se localiza en el límite entre Chile y Argentina. El CCVC se compone de un estrato-volcán Copahue dentro la caldera de Caviahue, y su actividad data de unos 4 Ma. El volcán Copahue presenta una actividad desde el Pleistoceno, y está definido por una actividad andesítica a basáltica-andesítica típica de volcán de arco. Estructuralmente, el CCVC está localizado en un campo de estrés generado por la interacción entre Sistema de Fallas Liquiñe-Ofqui y la zona de falla Antiñir-Copahue (Melnick et al., 2006). La presente memoria muestra estudios geoquímicos de elementos mayores y traza e isotopos de He, Pb y Sr en la rocas de las unidades del complejo. Los resultados muestran una fuente mantélica tipo MORB cercana, notado en las altas razones de 3He/4He, con una contribución de sedimentos y de la corteza oceánica de la placa de Nazca. La contribución de la corteza continental en CVCC es despreciable, que no modifica la química isotópica de los magmas. Las rocas de Copahue muestran mayores valores de la razón de Sr y Pb comparativo a las rocas de Caviahue, lo cual se atribuye principalmente a los sedimentos subductados. La diferencia puede ser producto de diferencias en los regímenes de fusión parcial en la generación de magmas para Copahue y Caviahue. Esto esta en acuerdo con el modelo de somerizacion del slab propuesto por Augusto et al. (2013), que además de proponer una fuente mantelica cercana (isotopos de He), muestra la variación del angulo del slab que provocaría cambios en la fusión. Sin embargo, estas diferencias isotópicas puede ser también producto de diferencias geoquímica en los sedimentos subductados para las rocas de Caviahue y Copahue.
24

Evidencias e implicación de deformación intracristalina en olivinos de los conos monogenéticos Caburga y La Barda y estratovolcanes Copahue y Callaqui de la zona volcánica Sur (37° -39°S)

Molina del Canto, Pablo Antonio January 2016 (has links)
Geólogo / Se seleccionaron los conos monogenéticos de La Barda y Caburga y los estratovolcanes de Callaqui y Copahue para estudiar olivinos deformados en lavas de estos volcanes pertenecientes a la Zona Volcánica Sur. Se determinó que en ambos tipos de volcanes los olivinos deformados son de origen cortical, hay presencia de antecristales, evidencias de mezcla de magma, poblaciones de cristales, zonaciones normales e inversas, la mayoría de los núcleos de olivinos se localizan fuera del equilibrio con su fundido hospedante, presentan prácticamente la misma distribución de tamaños de grano (en núcleos deformados y no deformados), igual distribución de tipo de evidencia óptica de deformación. Difieren en que los conos monogenéticos presentan una mayor proporción de olivinos deformados y una densidad de dislocaciones cualitativamente mayor. Además, las proporciones de tipo de zonación entre núcleos deformados y no deformados son diferentes entre ambos tipos de volcanes. No hay diferencia en tamaño, forma, textura, química que permita distinguir olivinos deformados de no deformados. Solo diferencias ópticas permiten su clasificación. Se propone que la deformación de los olivinos se produciría en reservorios profundos e intermedios y en conductos de ascenso en la corteza. En los reservorios someros (estratovolcanes) y temporales (conos monogenéticos) no se produciría deformación debido a las bajas presiones y temperaturas a las que se verían afectados. En estos reservorios se adquirirían las zonaciones químicas. La mayor proporción de olivinos deformados en conos monogenéticos se explicaría por los procesos de recuperación de dislocaciones, los que disminuirían la densidad de dislocaciones. Estos procesos operarían en ambos tipos de volcanes, pero en los estratovolcanes debido a los mayores tiempos de residencia afectarían a los cristales deformados por más tiempo.
25

Geoquímica y significado geológico del volcanismo plioceno-pleistoceno en los Andes del Sur (38°-42°S)

Curotto Estibill, Cristián January 2014 (has links)
Geólogo / En la Cordillera de los Andes, entre los 38° y 42°S, se observa un fenómeno interesante; la distribución del volcanismo plioceno-pleistoceno sugiere la presencia de un arco volcánico más ancho que el actual, pero manteniendo el mismo frente. El arco plioceno-pleistoceno está compuesto por un conjunto de centros volcánicos erosionados, que incluyen remanentes de los conductos emisores y se sitúan junto o en la base de los centros volcánicos Cuaternarios. Se recolectaron y procesaron datos geoquímicos y edades de muestras desde el Plioceno hasta el Holoceno en la zona de estudio. Razones La/Yb, La/Nb, La/Ta y Ba/Ta sugieren que la mayoría de las muestras volcánicas del periodo Plioceno-Pleistoceno presentan afinidad de arco, y que se encuentran lavas con estas características a más de 330 Km de la fosa, confirmando la hipótesis de un arco más ancho. La modelación de fusión parcial con el programa Arc Basalt Simulator sugiere que la fuente que generó una muestra de lava del Complejo Volcánico Pino Hachado, corresponde a una lherzolita de espinela, la fusión se generó a 2 GPa y 1200°C, lo que permitió una fusión parcial de 1,5%, además la deshidratación del slab que permitió esta fusión, se habría producido a 5 Gpa y 1063°C. Esta variación en el ancho del arco volcánico entre un periodo y otro, se atribuye a una variación importante en la velocidad de convergencia de las placas a inicios del Pleistoceno; una convergencia más rápida explicaría la presencia de un arco más ancho y más productivo. Un segundo factor de primer orden correspondería a la presencia de estructuras regionales importantes y a los regímenes de estrés presentes; la presencia del sistema de falla Liquiñe-Ofqui restringe el ascenso de magmas en el caso del arco cuaternario, y por el contrario, en el arco plioceno-pleistoceno no se observa una relación estricta entre el volcanismo y las estructuras regionales, lo que permitiría el ascenso de magmas en la parte oriental de la zona de estudio.
26

Evaluación y zonificación preliminar del peligro volcánico del volcán Tacora, XV región de Arica y Parinacota, Andes centrales del norte de Chile

Barrientos Collao, José Arturo January 2013 (has links)
Geólogo / En el presente trabajo se evalúan y zonifican los peligros volcánicos del volcán Tacora. La investigación indica que el volcán Tacora tiene una historia eruptiva explosiva más reciente a la documentada, pues se encontró un depósito de flujo piroclástico estimado en edad menor a 20 ka. No se encontraron depósitos de caída piroclástica, por lo tanto, en la actualidad, presenta una baja probabilidad de tener una erupción explosiva de gran magnitud (VEI > 4). Para realizar la zonificación del peligro volcánico se modelaron los eventos volcánicos que se considera pueden causar mayor daño: lahares, flujos de densidad piroclástica, avalanchas volcánicas y caída de piroclastos, sobre la base de datos estadísticos globales y con diferentes metodologías apropiadas para cada caso. Para la modelación de flujos piroclásticos y avalanchas volcánicas se utilizó el método del cono de energía implementado a través del modelo computacional LAHARZ. Para modelar la caída piroclástica se utilizó el modelo Tephra2, al que se ingresaron datos de viento extraídos del National Oceanic and Atmospheric Administration (Re-análisis del NOAA), además de estimaciones de masa emitida en dos escenarios eruptivos y datos topográficos. La modelación de lahares señala que ante la eventual ocurrencia de este proceso volcánico y debido a la topografía del sector, las zonas que revisten mayor peligro se encuentran ubicadas hacia el NE y W del volcán, asociadas a las estaciones de mayor acumulación de nieve (invierno y verano). Según los resultados obtenidos, de producirse un evento explosivo, las zonas impactadas por los flujos piroclásticos y avalanchas volcánicas cubrirían un radio aproximado de 12 km siendo el sector N-NW el menos afectado, protegido por altos topográficos. La caída de piroclastos, dependiente de la dirección y velocidad del viento, afectaría mayoritariamente el sector Este del volcán en invierno, en otoño y en primavera, aunque no de forma tan clara en las dos últimas estaciones. En verano la caída de piroclastos podría afectar en todas las direcciones. Ante la instalación de una planta geotérmica se recomienda monitoreo de microsismicidad y de gases en fumarolas, levantar protecciones y construir canales para el desvío de posibles lahares.
27

The control of magmatic system properties on volcano dimensions and building: The cases of Lascar, Lonquimay and Llaima volcanoes, Andes of Chile

Contreras Vargas, María Angélica January 2017 (has links)
Magíster en Ciencias, Mención Geología / Los estratovolcanes son la manifestación en superficie de complejos sistemas magmáticos profundos. En el presente trabajo, se ha desarrollado un modelo cuyo objetivo es contribuir a la comprensión de la influencia de las propiedades del sistema magmático de un estratovolcán, en el perfil topográfico y dimensiones del mismo. Se asume un volcán construido por la acumulación de flujos de lava emitidos desde un centro de emisión único, excluyendo otros procesos que pueden afectar el crecimiento tales como erosión, avalanchas, volcanismo adventicio, acumulación de piroclastos, entre otros. Se considera que cada erupción es gatillada por la inyección de nuevo magma en el reservorio, y que la resultante sobrepresión asociada provoca la removilización de una parte del magma almacenado que es posteriormente extruido. El modelo se probó en 3 estratovolcanes de los Andes de Chile, con diferencias morfológicas y composicionales: el volcán Lascar ubicado en la Zona Volcánica Central, y los volcanes Lonquimay y Llaima localizados en la Zona Volcánica Sur. Los resultados obtenidos tras aplicar el modelo fueron validados con otros métodos independientes: termobarometría en muestras seleccionadas de estos volcanes y estudios geofísicos previos. Los resultados obtenidos revelan una fuerte influencia de las propiedades del sistema magmático en la morfología de los volcanes en superficie. Volcanes que superan los 2000 m de altura desde su base y poseen un radio basal de más de 10 km, estarían asociados a cámaras profundas, ubicadas a más de 10 km bajo la superficie. En volcanes de altura menor a 1500 m y radio basal menor a 10 km, el reservorio alimentador de las erupciones se ubicaría a menos de 6 km de profundidad. Si además se considera la densidad de la corteza y del magma, esto es más complejo pues a mayor flotabilidad se espera un estratovolcán más alto. Por otra parte, mientras mayor es el tamaño del reservorio, los flujos de lava emitidos también lo serán y, en consecuencia, se espera un radio basal mayor y un volcán de mayor volumen. Nuestro análisis sugiere que los volcanes Lonquimay y Llaima están cerca de alcanzar su altura máxima, por lo tanto, erupciones efusivas de volumen considerable ocurrirían probablemente en sus flancos, mientras que erupciones más bien moderadas son esperables que ocurran desde su cima. Al contrario, el volcán Lascar no habría alcanzado su altura máxima, en consecuencia, flujos de lava de volumen considerable podrían ser emitidos desde la cima.
28

Análisis Termal del Complejo Volcánico Descabezado Grande y Planchon Peteroa Mediante Sensores Remotos

Lemus Hernández, Martín Gabriel January 2010 (has links)
Con el objeto de obtener las temperaturas superficiales asociadas al campo de flujo calórico provenientes desde el interior de la tierra, se ha aplicado un modelo u algoritmo que extrae la contribución geotermal a partir de la temperatura superficial neta. Dicho proceso se basa en la identificación y modelamiento de los factores o componentes significativos que aporten una señal termal en el balance térmico superficial para luego extraerlos, exceptuando, claro está, la contribución geotermal. Para tener una perspectiva regional del campo de temperaturas superficial, se han utilizado como datos de entrada del modelo imágenes satelitales ASTER, que poseen características idóneas para el cumplimiento del objetivo propuesto. La zona de estudio se encuentra en la Cordillera Principal de los Andes entre los 35º y 35,5º de latitud sur, en la Región del Maule de Chile. En ella se encuentran los Complejos Volcánicos Planchón-Peteroa y Descabezado Grande-Quizapu, principales fuentes de calor para los fenómenos hidrotermales documentados en la zona. Los factores que afectan la temperatura superficial son la exposición a la radiación solar, la humedad, cubierta vegetacional y la temperatura de otros materiales en contacto con la superficie tales como la atmósfera, agua o nieve. La forma en que estos factores afectan el balance termal depende de las propiedades intrínsecas de los materiales expuestos, tales como la inercia termal, albedo y emisividad. Se han modelado los factores que afectan en 1º orden el balance térmico mediante modelos calibrados con datos de terreno y otros que basados en supuestos, no requieren dicha información. Los factores considerados son: la radiación solar y la variación termal de la superficie con la elevación. Una vez obtenidas las expresiones respectivas, son substraídas de la temperatura superficial neta. El residuo puede ser considerado en gran parte explicado por la contribución geotermal. En la imagen final se han reducido considerablemente los “ruidos” de la imagen termal neta sin atenuar la componente geotermal; lo cual permite distinguir de manera directa las anomalías termales asociadas a los sistemas volcánicos e hidrotermales, haciendo del método propuesto una herramienta atractiva y efectiva en la prospección Geotermal y un aporte en la comprensión de las dinámicas de los sistemas hidrotermales.
29

Evolución Geológica y Petrológica del Complejo Volcánico Quimsachata – Aroma, Región de Tarapacá, Andes Centrales del Norte de Chile

Correa Ojeda, Nicolás Alejandro January 2011 (has links)
Los volcanes Aroma y Quimsachata son dos complejos volcánicos andesíticos a dacíticos (60-67% de SiO2) de alto-K, que se edifican por sobre 4.200-4.500 m s.n.m. en el Altiplano de Iquique, al extremo norte de Pampa Lirima. Ambos conforman el Complejo Volcánico Quimsachata Sur – Aroma (CVQS-CVA), el que define una historia evolutiva de ca. 1,6 Ma entre el Plioceno superior y el Pleistoceno inferior, con una actividad registrada de naturaleza predominantemente efusiva y litología relativamente monótona, caracterizada principalmente por: (1) abundancia de inclusiones máficas ovaladas (52-56% de SiO2); (2) la presencia de ‘megacristales’ de sanidina; (3) altos grados de oxidación en anfíbolas y biotitas; y (4) gran diversidad de texturas de desequilibrio. La actividad eruptiva del CVQS-CVA fue separada en dos períodos principales: 3,6-2,6 Ma, donde la actividad volcánica fue contemporánea en ambos complejos y registró una migración de ca. 3,5 km en sentido SE-NW en el CVQS; y hace 1,6 Ma, concentrándose en el CVA. El fin de la actividad en el CVQS-CVA estuvo marcado por el inicio de la actividad volcánica en el C.V. Quimsachata Norte, con características similares a la del CVQS-CVA. La migración del volcanismo en sentido SE-NW contrasta con las observaciones regionales que indican una migración del volcanismo en sentido W-E, lo que representa un rasgo particular del CVQS-CVA en el contexto magmático de Pampa Lirima. El lineamiento NW-SE que localmente conforman sus centros de emisión indica un fuerte control estructural en el ascenso magmático, el que habría estado controlado por fallas profundas, subverticales, de carácter inverso y transcurrente, que representan una zona de transferencia en el estilo estructural del basamento al sur y al norte de Pampa Lirima. La actividad reciente reportada hace 1,1 Ma en el C.V. Quimsachata Norte, y la existencia de fallas profundas que permean el basamento, indican condiciones favorables para la existencia de un sistema geotermal activo, como el que hoy existe en el sector de Pampa Lirima. Los magmas que dieron origen al CVQS-CVA son de naturaleza mantélica y se generaron a partir de bajas tasas de fusión parcial en una fuente con presencia de granate. Estos magmas primitivos de composición basáltica ascendieron hacia un reservorio profundo ubicado a 15-19 km de profundidad, en el límite de la corteza inferior-superior, donde se llevaron a cabo procesos MASH a temperaturas de 860-980° C. Durante su ascenso y estadía en esta cámara profunda, los magmas adquirieron signaturas geoquímicas corticales típicas de los Andes Centrales, debido principalmente a asimilación cortical. Posteriormente, estos magmas ascendieron hasta una cámara superficial ubicada a 6-9 km de profundidad, donde fueron estancados bajo un magma diferenciado riodacítico más frío, viscoso y cristalino, a una temperatura de 640-720° C. El rápido ascenso produjo descompresión adiabática y exsolución de volátiles en los magmas máficos, lo que a su vez indujo gran vesicularidad en ellos. Esto, sumado a cristalización fraccionada del magma máfico en la interfaz y procesos de convección interna por calentamiento de la base de la cámara por parte del magma máfico, dieron pie a intensos mecanismos de automezcla, hibridación (mixing) y mezcla inmiscible (mingling) de magmas. El alto contraste termal entre las fases magmáticas favoreció el desarrollo de enclaves, y el estado subliquidus de estos permitió a su vez el intercambio de masas entre ambas fases magmáticas, lo que definió por una parte un magma híbrido hospedante de composición andesítica a dacítica, y por otra, la presencia enclaves también híbridos de composición andesítica basáltica. Estos procesos explican en gran parte la diversidad de texturas de desequilibrio observadas en los productos del CVQS-CVA y la coexistencia de anfíbolas de distintos tipos. La temperatura de interacción y reequilibrio entre ambas fases magmáticas fue de 720-820° C. La intrusión de magmas máficos en esta cámara superficial se dio a lo largo de la evolución del complejo en diferentes proporciones. Se ha observado además que los procesos de mezcla de magmas han continuado llevándose a cabo en los centros volcánicos recientes del ‘Gap de Pica’, como el C.V. quimsachata Norte y los Domos de Porquesa.
30

Caracterización petrográfica y geoquímica de los productos de la erupción del volcán Mirador (AD 1979), Carrán-Los Venados, Chile

Castro Pohorecky, Andrea Paz January 2015 (has links)
Geóloga / El volcán Mirador es un cono de piroclastos que se encuentra ubicado en la Zona Volcánica Sur de los Andes (ZVS) a los 40°21 30 S y a los 72°03 30 O, dentro del Grupo Volcánico Carrán-Los Venados (GVCLV). Este grupo volcánico constituye una franja de alrededor de 70 centros eruptivos, correspondiendo al mayor conjunto de centros eruptivos menores (CEM) de la ZVS. Posee una orientación N60-70°E y la mayoría de los centros eruptivos corresponden a conos de piroclastos y maares. Estos centros generalmente son de tipo monogenético, aunque tres de ellos presentan reactivaciones históricas, y por ende, han dejado de ser monogenéticos. Estos corresponden al maar Riñinahue (1907), maar Carrán (1955) y volcán Mirador (1979), cuya ubicación preferencial dentro del GVCLV (justo en la intersección de la franja de orientación N60-70°E y la ZFLO), sugiere que forman parte un caso particular dentro de todo el GVCLV. Los productos de la erupción de 1979 del volcán Mirador son de composición basáltica y andesítico-basáltica, encontrándose en el límite del campo toleítico y calco-alcalino. Los análisis petrográficos indican un gran desequilibrio en los magmas que generaron estas rocas (zonación y texturas de reabsorción en microfenocristales), mientras que los análisis químicos indican bajos contenidos de Ni, Cr y Co, que sugieren fraccionamiento de olivino, clinopiroxeno y magnetita, como proceso principal de diferenciación del magma. Este se habría originado por fusión parcial del manto astenosférico a partir de una lherzolita de espinela, debido a la influencia de fluidos provenientes de la deshidratación de la placa oceánica subductada. Diferencias petrográficas y geoquímicas con otros conos monogenéticos del GVCLV y la ZVS, muestran que los magmas del volcán Mirador poseen una mayor evolución y diferenciación. Por otro lado, la presencia de una zona altamente fracturada (intersección de dos sistemas de fallas), en vez de generar una mayor cantidad de rutas estables, podría estar generando una trampa que acumule magma en la corteza superior, generando de esta manera, un reservorio magmático somero. En este caso, la evolución magmática estaría dada por un ascenso inicial hasta el límite corteza manto, donde comienza la diferenciación en un primer reservorio magmático profundo, para posteriormente ascender a través de diques que utilizan como ruta estable la ZFLO (hasta que son capturados por las fracturas de la franja N60-70°E), donde se encuentran con un reservorio somero cortical que permitiría una mayor diferenciación magmática. La generación de un reservorio magmático en la corteza superior estaría alimentando un volcanismo de tipo poligenético en el GVCLV, el cual se estaría desarrollando, actualmente, en la zona de intersección de la ZFLO y la franja de orientación N60-70°E.

Page generated in 0.0894 seconds