• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Metrology and Characterization of Impurity Transport During Cleaning of Micro and Nano Structures

Yan, Jun January 2006 (has links)
A major challenge in the manufacturing of micro and nano devices is the cleaning, rinsing, and drying of very small structures. Without a technology for in situ and real-time monitoring and controlling, the rinse processes that account for a significant fraction of the total processing steps use a large amount of water and energy perhaps unnecessarily. This "blind" processing approach leads to waste that can have significant economic and environmental impacts. An electrochemical residue sensor (ECRS) has been developed and is aimed at in situ and real-time measurement of residual contamination inside the micro and nano structures. Using this technology, the mechanisms and bottlenecks of cleaning, rinsing, and drying can be investigated and the processes can be monitored and controlled.An equivalent circuit model was developed to assist the design of the sensor; its validity was proved by the first prototype. The simulation results and the experimental data predicted a good sensitivity in a wide range of operational frequency. To use the sensor in a practical rinse tank setup, the sensor-on-wafer prototype was designed and fabricated. Both the fab-scale and the lab-scale tests were performed and results illustrated many successes. The sensor is the first and the only available technology that provides the in situ and real-time cleanness information in the microstructures during the rinse processes. The sensor results distinguished four different types of rinse processes and showed high sensitivity to the ionic concentration change in the microstructures. The impacts of cleaning and rinsing parameters such as flow rate, temperature, cleaning solution concentrations, and process time on the sulfuric acid rinsing efficiency were investigated by using the sensor. The investigation discovered that sulfuric acid rinsing is a two-stage process: a flow-control stage and a desorption-control stage. A comprehensive rinse model was developed to correlate the transport process and the trench impedance that is the sensor's signal. This model combined with the experimental data proved that increasing flow rate in the overflow rinse has a low efficiency for the rinse processes controlled by the surface reactions. The model, for the first time, shows the dynamics of the charging of the silicon dioxide surface and the dynamics of the potential build-up in the solution. It also discovered that the cation rinsing is a challenge if the cation adsorbs on or reacts with the surface.
2

IN-SITU ELECTRO-CHEMICAL RESIDUE SENSOR AND PROCESS MODEL APPLICATION IN RINSING AND DRYING OF NANO-STRUCTURES

Dhane, Kedar January 2010 (has links)
Typical surface preparation consists of exposure to cleaning chemical to remove contaminants followed by rinsing with ultra-pure water which is followed by drying. Large quantities of water, various chemicals, and energy are used during rinsing and drying processes. Currently there is no in-situ metrology available to determine the cleanliness of micro- and nano-structures as these processes are taking place. This is a major technology gap and leads to over use of resources and adversely affects the throughput.Surface preparation of patterned wafers by batch processing becomes a major challenge as semiconductor fabrication moves deeper in submicron technology nodes. Many fabs have already employed single wafer tools. The main roadblock for single-wafer tools is their lower throughput. This obstacle is eased by introduction of multi chamber tools. To reduce cycle time and resource utilization during rinse and dry processes without sacrificing surface cleanliness and throughput, in-situ metrology is developed and used to compare typical single wafer spinning tools with immersion tools for rinsing of patterned wafers. This novel metrology technology includes both hardware for an in-situ measurement and software for process data analysis. Successful incorporation of this metrology will eliminate dependency on external analysis techniques such as Inductively Coupled Mass Spectroscopy (ICPMS), Scanning Electron Microscope (SEM), and Tunneling Electron Microscope (TEM), and will lead to fast response time.In this study the electro-chemical residue sensor (ECRS) was incorporated in a lab scale single-wafer spinning and single- wafer immersion tool. The ECRS was used to monitor dynamics of rinsing of various cleans such as ammonium peroxide mixture (APM), hydrochloric peroxide mixture (HPM), and sulfuric peroxide mixture (SPM). It was observed that different cleaning chemicals impact the subsequent rinse not only through adsorption and desorption but also through surface charge. The results are analyzed by using a comprehensive process model which takes into account various transport mechanisms such as adsorption, desorption, diffusion, convection, and surface charge. This novel metrology can be used at very low concentration with very high accuracy. It is used to study the effect of the key process parameters such as flow rate, spin rate, temperature, and chemical concentration.

Page generated in 0.0909 seconds