• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Microscopic Simulation of Pedestrian Traffic in a Station Environment: A Study of Actual and Desired Walking Speeds

Lagervall, Malin, Samuelsson, Sandra January 2014 (has links)
In order to attract pedestrians to travel with public transport instead of private cars, the layout of interchange stations is important and should be designed in an effective way. Microscopic simulation of pedestrians can be used to evaluate different layout scenarios or a future increase in flow. The simulation software Viswalk was investigated, where the movements of pedestrians are based on a social force model,. The purpose of this thesis was to investigate simulated walking speeds for different flow levels and to investigate the effects of dividing pedestrians into types with different desired speeds. The aim was to find a desired speed distribution that can be used for different flow levels. Field studies have been performed to collect pedestrian traffic data with a video camera at Stockholm Central Station. Two disjoint flow levels were identified and used to investigate if the same desired speed distribution could be used for different flow levels. The average observed walking speed was 1.33 metres per second at the low flow level and 1.25 metres per second at the high flow level. The error was 4.5 percent between the average observed walking speed and the average simulated walking speed when the optimal desired speed distribution at the low flow level was used at the high flow level. Effects of using different desired speed distributions for different pedestrian types have also been investigated. The error between the average of the observed and the simulated walking speeds varies between 2.3 and 4.1 percent when dividing pedestrians into different types when the optimal desired speed distributions at the low flow level are used at the high flow level. A sensitivity analysis of some parameters of the social force model in Viswalk has also been performed. Several adjustments of the parameters show that some parameters had great impact of the simulated walking speeds. The final conclusion is that the parameter configuration and how the pedestrians are divided into different types affect the average simulated walking speed.
2

Pedestrian Walking Speeds at Signalized Intersections in Utah

Berrett, Jordi Jordan 01 March 2019 (has links)
The 2009 edition of the Manual on Uniform Traffic Control Devices (MUTCD) recommends a pedestrian walking speed of 3.5 feet per second for use in the timing of pedestrian clearance intervals at signalized intersections (reduced from 4.0 feet per second in the 2003 edition). Jurisdictions across the state of Utah continue to maintain pedestrian walking speeds of 4.0 feet per second for normal intersections with guidance on engineering judgement for areas where a lower pedestrian walking speed should be considered. In 2018, it was decided that the current state guidance with regard to pedestrian walking speeds be evaluated for any needed changes, such as adopting the national guidance found in the 2009 MUTCD. To evaluate pedestrian walking speeds at signalized intersections, 15 sites throughout the state of Utah were studied, producing a total of 2,061 observations of pedestrian crossing events. These crossing events were evaluated to calculate walking speeds in relation to pedestrian demographics at each location. Evaluated demographics included pedestrian group size, gender, mobility status, age category, alertness, and potential distractions. Upon completion of data collection, a statistical analysis was conducted to determine mean and 15th percentile pedestrian walking speeds by demographic. The data collection procedure, data analysis, and limited recommendations for pedestrian start-up delay and pedestrian walking speeds as used in signal timing are discussed in this report. The data suggest that Utah continue to maintain its guidance of 4.0 feet per second walking speeds at most signalized intersections, while exercising engineering judgment at locations containing high pedestrian volumes or locations containing high percentages of elderly or disabled pedestrians.

Page generated in 0.0796 seconds