Spelling suggestions: "subject:"elektroenergietechnik"" "subject:"wasserstofferzeugung""
1 |
Modelling and simulation of a photovoltaic fuel cell hybrid systemAbd el-Aal, Abou El-Maaty Metwally Metwally Aly. Unknown Date (has links)
University, Diss., 2005--Kassel.
|
2 |
Untersuchung des Langzeitverhaltens der thermodynamischen Stabilität von MetallhydridenWanner, Martin. January 2001 (has links)
Stuttgart, Univ., Diss., 2001.
|
3 |
Thermodynamisches Verhalten von Erdgas, Wasserstoff und Erdgas-Wasserstoff-Mischgasen in Salzkavernen während der unterirdischen SpeicherungKeßler, Benjamin 01 February 2022 (has links)
In Deutschland wird das Thema der Energiewende mit voranschreitender Diskussion über Kohle- und Atomausstieg immer populärer und konkreter. Hierbei wird es immer wichtiger, die Erneuerbaren Energien in den Vordergrund zu rücken und diese effizienter zu nutzen. Ein zentrales Problem, welches gelöst werden muss, ist die Speicherung dieser Energie. Es muss zu jeder Zeit möglich sein den Energiebedarf zu decken, unabhängig davon, ob Wind- und Solaranlagen Strom liefern.
Ein möglicher Ansatz ist, aus überschüssiger Wind- und Sonnenenergie über eine Elektrolyse Wasserstoff zu erzeugen und diesen dann in unterirdischen Strukturen wie z.B. Salzkavernen, Aquiferstrukturen oder ausgeförderte Öl- oder Gaslagerstätten zu speichern. In dieser Arbeit sollen die thermodynamischen und fluiddynamischen Strömungsvorgänge in Salzkavernen während der Umwidmung von Erdgas auf Wasserstoff untersucht und simuliert werden. Für die Umstellung eines Kavernenspeichers von Erdgas auf Wasserstoff wurden zwei Möglichkeiten identifiziert.
Die erste Variante ist, das Kaverne befindliche Erdgas als Kissengas zu nutzen. Diese Variante bringt den Vorteil, dass das Kissengas als natürliche Hemmschwelle zwischen dem Kavernensumpf und Wasserstoff dient, was wiederum eine Schwefelwasserstoff – Bildung hemmt.
Als zweite Umstellungsvariante könnte die Kaverne mit vollgesättigter Sole gefüllt werden, um das Erdgas vollständig fördern zu können. Anschließend kann Wasserstoff in die mit Sole gefüllte Kaverne injiziert werden. Für diese Umstellungsvariante ist es nötig, den Soleentleerungsstrang in die Bohrung einzubauen, wofür eine Workoveranlage vonnöten ist. Diese Variante bringt den Vorteil, dass eine reine Wasserstoffkaverne zur Verfügung steht und geringere Anforderungen an die Gasaufbereitung gestellt werden müssen:Inhaltsverzeichnis
Abkürzungs- und Symbolverzeichnis I
1. Einleitung 1
1.1 Aufgabenstellung 3
1.2 Bedeutung von Salzkavernen für die Speicherung 4
1.3 Stand der Technik 6
1.4 Aufbau der Arbeit 7
2. Eigenschaften von Methan, Wasserstoff und Methan – Wasserstoff – Mischgasen 9
2.1 Dichte 11
2.1.1 Methan 12
2.1.2 Wasserstoff 13
2.1.3 Methan – Wasserstoff – Mischgase 15
2.2 Realgasfaktor 15
2.2.1 Methan 16
2.2.2 Wasserstoff 17
2.2.3 Methan – Wasserstoff – Mischgase 18
2.3 Dynamische Viskosität 20
2.3.1 Methan 20
2.3.2 Wasserstoff 22
2.3.3 Methan – Wasserstoff – Mischgase 25
2.4 Spezifische Wärmekapazität und Isotropenexponent 27
2.4.1 Methan 27
2.4.2 Wasserstoff 29
2.4.3 Methan – Wasserstoff – Mischgase 30
2.5 Wärmeleitfähigkeit 30
2.5.1 Methan 30
2.5.2 Wasserstoff 32
2.5.3 Methan – Wasserstoff – Mischgase 33
2.6 Joule – Thomson – Koeffizient 34
2.6.1 Methan 34
2.6.2 Wasserstoff 36
2.6.3 Methan – Wasserstoff – Mischgase 36
2.7 Löslichkeit in salzhaltigem Wasser 36
2.7.1 Methan 36
2.7.2 Wasserstoff 39
2.7.3 Methan – Wasserstoff – Mischgase 39
2.8 Gegenüberstellung der Eigenschaften zwischen Erdgas, Wasserstoff und Erdgas – Wasserstoff – Mischgasen 40
2.8.1 Dichte 40
2.8.2 Realgasfaktor 41
2.8.3 Dynamische Viskosität 42
2.8.4 Spezifische Wärmekapazität 43
2.8.5 Wärmeleitfähigkeit 44
2.8.6 Joule – Thomson – Koeffizient 45
2.9 Zusammenfassung der genauesten Stoffgleichung 46
3. Physikalische Grundlagen 48
3.1.1 Wärmetransport 49
3.1.2 Konvektion 50
3.1.3 Diffusion 50
3.1.4 Charakterisierung von Strömungen 53
4. Auswertung der Stadtgas – Erfahrungen und Entwicklung von Gas – Mischungsreferenzfällen 57
4.1 Stadtgasspeicherung 57
4.2 Gasqualität und Gasqualitätsveränderungen während der Medienumstellung von Stadtgas auf Erdgas 58
4.2.1 Theoretische Betrachtungen der Stadtgas – Erdgas – Umstellung 59
4.2.2 Monitoring Umstellung der Kaverne LT 22 61
4.2.3 Umstellung weiterer Kavernen und die Entwicklung der Gasqualität in den Jahren 1997 bis 1998 63
4.2.4 Anwendbarkeit der Ergebnisse auf die Medienumstellung mit Wasserstoff 64
5. Entwicklung eines Simulationsmodells 65
5.1 Modellentwicklung 66
5.1.1 Modellkonzeption 66
5.1.2 Geometrie 68
5.1.3 Randbedingungen 69
5.1.4 Feuchteentwicklung bei der Gasspeicherung in Salzkavernen 70
5.1.5 Vernetzung 72
5.1.6 Beschreibung und Auswahl der verfügbaren Turbulenzmodule 75
5.1.7 Mathematische Beschreibung des verwendeten Turbulenzmoduls 79
6. Simulation der Medienumstellung 83
6.1 Umstellungsstrategien 83
6.2 Simulation der Injektionsphase für unterschiedliche Randbedingungen 84
6.2.1 Untersuchung des Einflusses der Eintrittsgeschwindigkeit 84
6.2.2 Untersuchung des Einflusses des Anfangsdrucks 88
6.2.3 Untersuchung des Einflusses der Temperaturverhältnisse der Gase 91
6.3 Simulation der Ruhephase 93
6.4 Simulation der Ausspeicherphase 97
6.5 Prognose der zu erwartenden Gasqualitäten 99
7. Zusammenfassung und Ausblick 101
Literaturverzeichnis 105
Abbildungsverzeichnis 111
Tabellenverzeichnis 115
Anlagenverzeichnis 116
|
4 |
Untersuchungen zur Bohrungsintegrität sowie dem Gasverhalten von Wasserstoff in Salzkavernen unter Berücksichtigung variabler RandbedingungenKirch, Martin 19 May 2023 (has links)
Salzkavernen gelten als vielversprechende Möglichkeit Wasserstoff unter Tage zu speichern. Da aktuell keine Salzkaverne zur kommerziellen Wasserstoffspeicherung in Deutschland existiert, wurden Forschungsvorhaben initiiert, um offene Fragen in diesem Bereich zu klären. Die vorliegende Arbeit beschäftigt sich mit der Bestimmung der Dichtheit eines ausgewählten technischen Bohrungsbarriereelements: der letzten zementierten Rohrtour. Laborative Permeabilitätsmessungen stellen eine Möglichkeit dar, den Nachweis der Dichtheit zu erbringen. Zur Messung der Permeabilität werden zwei Versuchsanlagen gebaut, die auf einem instationären Messprinzip basieren. Mit Hilfe dieser Anlagen wird die Durchlässigkeit von Einzelmaterialproben und Verbundproben bestehend aus Steinsalz, Anhydrit, Zementstein und Futterrohr bestimmt und bewertet. Zur Auswertung der Versuche wird eine Software programmiert, die die eindimensionale Strömungsgleichung mit Hilfe der Finiten-Volumen-Methode numerisch löst.
Die Arbeit beschreibt die weltweiten Erfahrungen im Bereich untertägiger Wasserstoffspeicherung. Weiterhin wird der Stand der Technik von Permeabilitätsmessungen dargestellt und die Eigenschaften des verwendeten Messverfahrens beschrieben. Mit Hilfe der Auswertung von Dichtheitstest kann gezeigt werden, dass die Anlagen zum Nachweis niedrigster Permeabilitäten geeignet sind. Das grundliegende mathematische Modell und dessen numerische Approximation wird hergeleitet. Die numerischen Fehler und der Modellfehler werden mit Hilfe einer Genauigkeitsanalyse bestimmt. Über die Analyse der Messunsicherheiten der Eingangsparameter erfolgt eine Abschätzung der Messunsicherheit der berechneten Permeabilität.
Die Ergebnisse der Permeabilitätsmessungen zeigen, dass der untersuchte Zementstein dichte Verbunde mit Steinsalz und Futterrohr gegenüber Wasserstoff ausbilden kann. Als wichtigste Einflussgröße auf die Permeabilität wird der Effektivdruck identifiziert. Ein Einfluss der Messgase (Wasserstoff und Methan) auf das Strömungsverhalten kann, mit Ausnahme des Klinkenberg-Effekts, nicht nachgewiesen werden. Erfahrungen aus dem Bereich der Erdgasspeicherung sind prinzipiell auf die Wasserstoffspeicherung übertragbar. Die Ergebnisse der Untersuchungen sind in die Erstellung eines Leitfadens zur Errichtung von Wasserstoffkavernen für Genehmigungsbehörden und zukünftige Investoren eingeflossen.
|
5 |
Erster Umsetzungsbericht zur Sächsischen Wasserstoffstrategie02 January 2024 (has links)
Der erste Umsetzungsbericht der Sächsischen Wasserstoffstrategie ist als „Monitoring-Instrument“ zu verstehen. Wir möchten nachverfolgen und auch kritisch prüfen: wie kommen die Maßnahmen der Sächsischen Wasserstoffstrategie voran? Wo stehen wir? Wo gibt es Korrektur- und Anpassungsbedarf? Seit der Veröffentlichung der Sächsischen Wasserstoffstrategie am 18. Januar 2022 wurde bereits eine Vielzahl der 24 Maßnahmen bearbeitet und auch schon umgesetzt. Das Spektrum reicht von Forschungsvorhaben in der Wissenschaft über Projekte in der Technologieförderung, Unterstützung von EU-weit bedeutsamen Projekten bis hin zur Bündelung und Vermittlung von Kompetenzen. Die Anwendungsbreite des Energieträgers Wasserstoff und die Komplexität der Themen und Aufgaben beim Weg in die künftige Wasserstoff-Welt ist enorm. Deshalb startete im Dezember 2022 die sächsische Kompetenzstelle Wasserstoff (KH2), die im vielfältigen Feld der Wasserstoff-Akteure eine wichtige Funktion einnimmt und koordinieren, vernetzen und informieren soll.
Redaktionsschluss: 16.08.2023
|
6 |
Beitrag zur ganzheitlichen Sicherheitsforschung wasserstoffbasierter TechnologienRömer, L., Partmann, C., Lippmann, W., Hurtado, A. 25 November 2019 (has links)
Mit der fortschreitenden Entwicklung wasserstoffbasierter Energiesysteme geht die Notwendigkeit einher, die neuen Technologiekonzepte hinsichtlich deren Sicherheit zu analysieren und zu bewerten.
Ziel des vorliegenden Papers ist daher zunächst die Beschreibung des aktuellen Standes zur Sicherheitsforschung für wasserstoffbasierte Energiesysteme. Die durchgeführte Literaturauswertung erfolgte mit den Schwerpunkten Analyseziele, Anwendungsbereiche und angewendete Methoden. Durch Unterschiede hinsichtlich dieser Schwerpunkte in der herangezogenen Literatur ist die Vergleichbarkeit und Verknüpfung der Ergebnisse erschwert. Zusätzlich liefern die ausgewerteten Studien gegensätzliche Schlussfolgerungen zur Bewertung der Sicherheit von wasserstoffbasierten Systemen. Eine beispielhafte Gegenüberstellung der Analyse eines Einzelsystems zu der Analyse eines Gesamtsystems verdeutlich darüber hinaus die Notwendigkeit für ganzheitliche Analysen in der Wertschöpfungskette von Wasserstoff.
Ein einheitliches Fazit zur Sicherheit wasserstoffbasierter Energiesysteme ist anhand der ausgewerteten Studien aufgrund der großen Unsicherheiten und der Widersprüchlichkeiten in den Ergebnissen der Analysen aktuell nicht möglich. Hierfür sind weiterführende Arbeiten erforderlich. / The progressive development of hydrogen-based energy systems is accompanied by the need to analyse and evaluate new technology concepts in terms of their safety.
Therefore, the aim of this paper is therefore to describe the current state of the safety research for hydrogen-based energy systems. The literature analysis was carried out with a focus on analysis goals, areas of application and applied methods. Differences with regard to these focuses in the cited literature make it difficult to compare and link the results. In addition, the evaluated studies provide contradictory conclusions for the evaluation of the safety of hydrogen-based systems. In an exemplary comparison of the analysis of an individual system with the analysis of an overall system, the need for holistic analyses in the hydrogen value chain is further illustrated.
A consistent conclusion on the safety of hydrogen-based energy systems is currently not possible on the basis of the analysed studies due to the large uncertainties and the contradictions in the results of the analyses. Consequently, further work is required.
A consistent conclusion on the safety of hydrogen-based energy systems is currently not possible on the basis of the analysed studies due to the large uncertainties and the contradictions in the results of the analyses. Consequently, further work is required.
|
Page generated in 0.0581 seconds