• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 376
  • 251
  • 79
  • 53
  • 45
  • 29
  • 8
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • Tagged with
  • 1005
  • 1005
  • 229
  • 187
  • 179
  • 173
  • 146
  • 142
  • 120
  • 93
  • 86
  • 84
  • 82
  • 81
  • 74
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Floating photocatalytic Pickering emulsion particles for wastewater treatment

Lazrigh, Manal January 2015 (has links)
The thesis constitutes an investigation into the production of floating photocatalytic particles (FPP) as a low cost, low carbon footprint and chemical-free wastewater treatment. It is anticipated that this approach would be particularly attractive for developing countries where it could reduce incidences of disease and pollution. The particles were manufactured from cocoa butter (CB), and contained either photocatalytic nanoparticle titanium dioxide TiO2 (P25) or silver-doped TiO2 (0.5% w/w). The photocatalytic activity of the particles was evaluated by means of the decolourisation of the dye indigo carmine (IC). Three arrangements were used; small scale treatment using Petri dishes, an 1800 ml batch-recirculation photoreactor and an 8 litre UV contactor. Membrane emulsification (ME) was the technique used here to generate particles of controlled size. The particles were in effect what are known as Pickering emulsions in which the solid fat core (CB) was stabilised by TiO2 nanoparticles, resulting in composite particles that float easily and can receive incident light to generate highly reactive free radical species. The FPPs were characterised by FEGSEM and EDs mapping analysis, and the images obtained displayed a spherical structure with a rough outer surface, and the EDs showed a good coverage of TiO2 on the surface of at a maximum loading of 10% w/w. Tests were conducted to assess the stability of the particles when used in repeated cycles. Reuse of the particles caused a significant drop of photodegradation activity after four cycles to 42% of that of freshly prepared particles. The correlation of photocatalytic activity with silver dosage was also investigated. The highest photocatalytic activity was achieved at 0.5 wt. % of silver doped TiO2 and was some 10% greater than for un- doped particles. The organic carbon release resulted from TOC analysis for the FPPs that were exposed to UV light for 8.5 hr in water was less than 1 wt. %. First order reaction kinetics were exhibited during decolourisation of IC dye with respect to the initial dye concentration, radiation intensity, percentage coverage of the liquid surface by the FPPs, and the catalytic loading. For a static system (i.e. no forced convection), the most effective surface coverage was identified as being in the range of 60 to 80%. A linear source spherical emission model (LSSE) was adopted to estimate the intensity of the incident radiation on the surface of the FPP layer in the photoreactor and validated. In addition, a preliminary kinetic model to describe of the effect of the photocatalytic active surface concentration of TiO2 as well as the efficient intensity flux in the kinetic model was developed for the FPP layer photoreactor.
42

Secondary Municipal Wastewater Treatment Using the UASB/Solids Contact Technology

Silva, Eudomar 17 December 2004 (has links)
Anaerobic pretreatment and aerobic post-treatment of municipal wastewater is being used more frequently. Recent investigations in this field using an AFBR/aeration chamber combination demonstrated the technical feasibility of this process. The investigation presented herein describes the use of a combined UASB/aeration chamber system for the treatment of municipal wastewater and attempts to demonstrate the technical feasibility of using the UASB process as both a pretreatment unit and a waste activated sludge digestion system. The results indicate that the UASB reactor has a TSS removal efficiency of about 37%. Of the solids removed by the unit, 33% were degraded by the action of microorganisms, and 4.6% were accumulated in the reactor. The results also show that accumulation of solids in the UASB reactor took place in the upper zone of the sludge bed.
43

Pretreatment of wastewater containing fats and oils using an immobilized enzyme.

Jia, Huanfei January 2002 (has links)
This thesis investigates an application of immobilized lipase for pre-treating wastewater containing fats and oils, which is difficult to treat practically. The kinetics of soluble lipase was studied for establishing background of the lipase. The immobilization of lipase was adopted in order to repeatedly use the expensive lipase. The developed immobilization methods were based on the characteristics of carriers, but covalent bonding of lipase was preferred because of strong adsorption nature. Three types of materials, nylon membrane and polystyrene-divinylbenzene and silica gel beads, were used for studying the lipase immobilization characteristics. The lipase from Canada rugosa was chosen because of its relatively high catalytic activity and commercial availability. The oily wastewater sources used were a simulated mixture of olive oil and distilled water as well as actual restaurant oily wastewater. A packed bed reactor packed with immobilized lipase was suitable for the study. Moreover, a comparative study of anaerobic digestion of lipase treated and un-treated oily wastewater was undertaken to evaluate the efficiency of the lipase pre-treatment method due to lack of the relevant literature in the enzymatic wastewater treatment field. The kinetics of lipase catalyzed hydrolysis reactions was investigated in a stirred tank reactor. The experimental results confirmed that the lipase catalyzed reaction obeyed Michaelis-Menten model. The optimal pH and temperature of the lipase catalysed hydrolysis reaction were 7 and 37°C, respectively. The conversion of oil to fatty acid was dependent on the reaction time and mass of the enzyme used. The lipase activities depended on the concentrations of some selected additives. Calcium ion improved lipase activity significantly amongst the additives used. / The immobilization of lipase was carried out using different materials, nylon membranes, polystyrene-divinylbenzene beads, and silica gel. Covalent adsorption was simple and successful for immobilizing the lipase onto nylon membrane which was pre-treated with HC1 solution for releasing amino groups. The adsorption of lipase was completed after only a 2-hour reaction time. It was much more practical for this shorter adsorption time (2 hours) rather than the 24 hours required for physical capillary adsorption of lipase. The properties of the immobilized lipase and the performance of the reactors we compared amongst the soluble and immobilized lipase forms. The immobilization, particularly for covalent bonding, made lipase more resistant to thermal deactivation. It was evident that the optimum temperature was shifted from 37°C for the soluble lipase to 45 and 40°C for immobilized lipase adsorbed onto nylon and polystyrene-divinylbenzene beads, respectively. The immobilized lipase could be used repeatedly with only little activity loss. The repeatedly operational stability made the reuse of the immobilized lipase possible. Comparison was also made between two types of beads, polystyrene-divinylbenzene beads and silica gels. Though polystyrene-divinylbenzene beads showed higher lipase activity and shorter adsorption time when compared to silica gels, the forme beads were not suggested for large scale study because of high cost of the beads. On improvement achieved in this work was that the 24 hours required for silanization of silica gel was reduced to only a few hours using evaporating 3-APTES in acetone instead of refluxing 3-APTES in toluene. / It is worthwhile to point out that much higher enzyme activity was obtained using the packed bed reactor as against the membrane reactor when aqueous oil emulsion was fed into the reactors. The lipase activity was 64.2% of soluble lipase activity for the immobilized lipase in the packed reactor but its activity was hardly detectable in the membrane reactor. Moreover, the operation of the packed bed reactor solved the of separating problem that severely hampered the lipase catalytic activity in the membrane reactor in aqueous phase. This result suggests that the packed bed reacts with the immobilized lipase is applicable in treating oily wastewater. The intrinsic parameters, Vmax and Km, were evaluated to study the internal diffusional effects of the porous spherical silica gel on the immobilized lipase. The changes of Vmax and Km for the immobilized lipase from those of the soluble lipase indicated that some alteration in the lipase intrinsic properties was caused by the immobilization of lipase. However, the magnitude of Thiele modulus suggested the immobilized lipase was most likely reaction controlling. In addition, good agreement for Vmax and Km from experiments and numerical model estimations seemed to suggest that the numerical model could be used for estimating Vmax and Km for the immobilized lipase. / An application was tried for conducting the hydrolysis of oily restaurant wastewater by soluble and the immobilized lipase. Enzyme activity of both forms was severely inhibited by the oily wastewater. The enzymatic activity was only 20% and 15% for soluble and the immobilized lipase, respectively, when compared to the initial activity value for the hydrolysis of olive oil by soluble lipase. Evaluation of the efficiency for the proposed lipase pre-treatment method was carried out by monitoring the performance of two anaerobic digesters. These two digesters were fed with lipase treated and untreated restaurant wastewater that was neutralised with KOH solution prior to feeding. The oil-floating problem was minimised by this saponification of fatty acids with potassium hydroxide. However, there was no clear sign of an improvement for the treatment efficiency of the anaerobic digesters in terms of COD removal and methane production rate resulted in digesting lipase treated oily wastewater when compared to the one without lipase pre-treatment.
44

Characteristics of a developing biofilm in a petrochemical wastewater treatment plant

Perera, Kuruppu Arachchige Kalyani, University of Western Sydney, College of Science, Technology and Environment, School of Science, Food and Horticulture January 2003 (has links)
A study was undertaken to investigate developing biofilms in a petrochemical wastewater treatment plant encompassing the architecture, microflora and the chemical nature of the matrix. Biofilms were developed on glass slides immersed in the activated sludge unit and analysed at known time intervals using a range of techniques. Initially, biofilms were investigated using conventional and emerging microscopic approaches to select a suitable technique. Scanning Confocal Laser Microscopy (SCLM) allowed visualisation of biofilms in situ with minimal background interference and non-destructive and optical sectioning which were amenable to quantitative computer-enhanced microscopy. SCLM was superior over Light microscopy and Scanning Electron Microscopy. This study demonstrated biofilm growth, presence of extracellular polymer substances (EPS) in early biofilms associated with cells and the development of porous nature of mature biofilms including channel-like structures. Overall new information has been obtained on developing biofilms in an Australian petrochemical wastewater treatment plant / Doctor of Philosophy (PhD) (Biological Sciences)
45

商業計劃:不織布膜離生物反應器廢水處理 / A business plan of the membrane bioreactors wastewater treatment company

忻維冰, Wei Ping Selina Hsin Unknown Date (has links)
The concern of water resource scarcity has always been the critical and debating issue for environmental interest groups, business operators, and politicians. The increasing global weather changes and economic development demands continue to attract new technologies and applications in water resource management, equally on clean water resource supply and wastewater treatment. K.Jie Company is a new start up company and a subsidiary of KNH Company, a nonwoven material manufacturing and converting company based in Taiwan and China. As part of the technology development, KNH’s internal business unit adapted nonwoven material in MBR (membrane bioreactors) for wastewater treatment. KNH decides to spin off this water business unit because of business decision after successful results and recognition. K.Jie Company will provider the key MBR modules as well as the total service provider for large industrial wastewater and municipal sewage treatment in Taiwan and in China in the near future.
46

Alternative Methods for Evaluation of Oxygen Transfer Performance in Clean Water / Alternativa metoder för utvärdering av syreöverföringsprestanda i rent vatten

Fändriks, Ingrid January 2011 (has links)
Aeration of wastewater is performed in many wastewater treatment plants to supply oxygen to microorganisms. To evaluate the performance of a single aerator or an aeration system, there is a standard method for oxygen transfer measurements in clean water used today. The method includes a model that describes the aeration process and the model parameters could be estimated using nonlinear regression. The model is a simplified description of the oxygen transfer which could possibly result in performance results that are not accurate. That is why many have tried to describe the aeration at other ways and with other parameters. The focus of this Master Thesis has been to develop alternative models which better describe the aeration that could result in more accurate performance results. Data for model evaluations have been measured in two different tanks with various numbers of aerators. Five alternative methods containing new models for oxygen transfer evaluation have been studied in this thesis. The model in method nr 1 assumes that the oxygen transfer is different depending on where in a tank the dissolved oxygen concentration is measured. It is assumed to be faster in a water volume containing air bubbles. The size of the water volumes and the mixing between them can be described as model parameters and also estimated. The model was evaluated with measured data from the two different aeration systems where the water mixing was relatively big which resulted in that the model assumed that the whole water volume contained air bubbles. After evaluating the results, the model was considered to maybe be useful for aeration systems where the mixing of the water volumes was relatively small in comparison to the total water volume. However, the method should be further studied to evaluate its usability. Method nr 2 contained a model with two separate model parameter, one for the oxygen transfer for the air bubbles and one for the oxygen transfer at the water surface. The model appeared to be sensitive for which initial guesses that was used for the estimated parameters and it was assumed to reduce the model’s usability. Model nr 3 considered that the dissolved oxygen equilibrium concentration in water is depth dependent and was assumed to increase with increasing water depth. Also this model assumed that the oxygen was transferred from both the air bubbles and at the water surface. The model was considered to be useful but further investigations about whether the saturation concentrations should be constant or vary with water depth should be performed. The other two methods contained models that were combinations of the previous mentioned model approaches but was considered to not be useful.
47

Investigation of industrial wastewater and treatment facility performance of A-gong-dian river basin

Li, Tsai-yu 04 July 2009 (has links)
The water quality of rivers currently is seriously polluted in Taiwan for influencing drinking water quality, harming onto plants growth caused soil pollution problems by using river irrigation and harming the human health indirectly by contamination in river sediments. In this work, we will investigate the area of river water quality characteristics and pollution sources to solve effectively for the pollution problems in the river area of A-Gong-Den in Kaohsiung County. The source of the river area of this study is dam of A-Gong-Den. Their water quality is polluted majorly by the domestic and industrial wastewater. The dark red-color of river body was due to the effluent from those industrial factories. Heavy metals such as Zn, total Cr ions and conductivity were all over the water quality standard of irrigation uses. Thus, we will try to improve the color problems in this area of river by diagnostics method in five factories having wastewater treatment plants. The effective solution in management and controlling will be discussed. We investigate the treatment facilities and performance evaluation in five industrial plants. We found the wastewater treatment and operation technology should be done and elevated in some factories. Importantly, the marked signs in pipelines in wastewater treatment were not clear and operated under not normal conditions. The EPA in county should send officers for checking the operations of the wastewater treatment plants in listings with a normal period for once.
48

Inhibitory Impact of Nitrite on the Anaerobic Ammonium Oxidizing (Anammox) Bacteria: Inhibition Mechanisms and Strategies to Improve the Reliability of the Anammox Process as a N-Removal Technology

Carvajal Arroyo, Jose Maria January 2013 (has links)
The anaerobic oxidation of ammonium (anammox) with nitrite as electron acceptor is a microbial process that generates nitrogen gas as main final product. After being discovered in the Netherlands in the 1990s, anammox has been applied in state-of-the-art biotechnologies for the removal of N pollution from ammonium rich wastewaters. The anammox process offers significant advantages over traditional nitrification-denitrification based processes. Since anammox does not need elemental oxygen, it allows for important savings in aeration. Furthermore, due to the autotrophic nature of the bacteria, anammox does not require external addition of electron donor, often needed in systems with post-denitrification. Although the anammox bacteria have high specific activity, they are slow growing, with doubling times that can range from 10 to 25 d. Therefore, in case of a toxic event causing the death of the biomass, a long recovery period will be required to reestablish full treatment capacity. The purpose of this work is to investigate the inhibition of anammox bacteria by compounds commonly found in wastewaters, including substrates, intermediates and products of the anammox reaction. Among common wastewater constituents, sulfide was shown to be especially harmful, causing complete inhibition of anammox activity at concentrations as low as 11 mg H₂S L⁻¹. Dissolved oxygen was moderately toxic with a 50% inhibiting concentration of 2.3 and 3.8 mg L⁻¹ to granular and suspended anammox cultures, respectively. Among the various compounds involved in the anammox reaction, special attention was paid to nitrite. Numerous literature reports have indicated inhibition of anammox bacteria by its terminal electron acceptor. However to date, there is no consensus explanation as to the mechanism of nitrite inhibition nor on how the inhibition is impacted by variations in the physiological status of anammox cells. The mechanisms of anammox inhibition by nitrite were thoroughly investigated in batch and continuous experiments of this dissertation. The results of this work demonstrate that conditions hindering generation of metabolic energy have a detrimental effect on the tolerance of anammox cells to toxic levels of nitrite. The absence of ammonium during events of nitrite exposure was shown to exacerbate its toxic effect. As a result of nitrite inhibition, nitric oxide, an intermediate of the anammox reaction, accumulated in the head space of the batch experiments. Moreover, nitrite inhibition was enhanced at the lowest range of pH tested (6.4-7.2), while same nitrite concentrations caused no inhibition under mildly alkaline conditions (7.5-7.8). Although other authors have relied on the classic concept that undissociated nitrous acid is the species responsible for the inhibition, the results in this work indicate that the pH affects the inhibitory effect of nitrite, irrespective of the free nitrous acid concentration. Nitrite stress triggered an active response of the anammox bacteria, which temporarily increased their ATP content to mitigate the inhibition. Additionally, starvation of anammox microorganisms, caused during storage or by sustained underloading of bioreactors, was found to limit the capacity of the bacteria to tolerate exposure to nitrite. The results of this dissertation indicate that the tolerance of anammox bacteria to NO₂⁻ inhibition relies on limiting its accumulation in sensitive regions of the cell. Active metabolism in presence of NH₄⁺ allows for active consumption of NO₂⁻, avoiding accumulation of toxic intracellular NO₂⁻ concentrations. Furthermore, secondary active transport proteins may be used by anammox bacteria to translocate nitrite to non-sensitive compartments. Nitrite active transport relies on a proton motive force. Therefore, conditions such as low pH (below 7.4) or absence of energy sources, which may disturb the maintenance of the intracellular proton gradient, will increase the sensitivity of anammox cells to NO₂⁻ inhibition. Strategies for the operation and control of anammox bioreactors must be designed to avoid exposure of the biomass to nitrite under the absence of ammonium, low pH or after periods of starvation.
49

Biofilm-Enhanced Treatment for Arctic Wastewater Stabilization Ponds Using Geotextile Substrate

Bridson-Pateman, Evan 12 August 2013 (has links)
In this thesis, a semi-permeable lining system was proposed to upgrade arctic wastewater stabilization ponds, acting as a biofilter. Although commonplace at lower latitudes, the effects of cold temperatures and short-duration summers on biofilter performance are inadequately studied. The goal of this research was to study the hydraulic and treatment performance of geotextile substrate biofilters under arctic conditions. Filtration experiments were conducted in a laboratory environment. Municipal wastewater was passed through columns containing nonwoven geotextiles over 10 cm of gravel. Three experimental trails were conducted at either 10? or 2?, each lasting 12 weeks. Weekly samples taken before and after filtration were analyzed for various water quality parameters. Hydraulic conductivity was monitored using weekly constant head permeameter tests. Results showed that biomat accumulation is possible on geotextile material over 12 week period. Significant removal of TSS and BOD5 was observed, along with a 1-log reduction in hydraulic conductivity.
50

Removal of model waste-water bacteria by magnetite in water and waste-water treatment processes

Mann, Ajaypal S Unknown Date
No description available.

Page generated in 0.1102 seconds