401 |
Dye decolourization by immobilized laccase and impact of auxiliary chemicals on dye decolourizationChampagne, Paul-Philippe 16 June 2009 (has links)
Textile dyes are molecules designed to impart a permanent colour to textile fabrics. They pose an environmental problem because they are toxic and they decrease the aesthetic value of rivers and lakes. Current technologies for dye removal cannot remove all classes of dyes and two or more technologies are usually combined to achieve statisfactory decolourization efficiencies. Lignin-degrading enzymes like laccases are potential technologies for dye decolourization and decolourization with immobilized laccase has been intensively investigated. The majority of those studies however have focused on dye disappearance and several reported that significant dye adsorption had occured during the dye removal, making the role of the enzyme unclear. Moreover, textile wastewaters contain auxiliary chemicals that can impact enzymatic dye decolourization and very few studies have evaluated the impact of those substances on laccase. This research evaluated the feasibility of treating dye-contaminated textile wastewaters with an immobilized laccase system. The first sub-objective was to examined the decolourization of Reactive blue 19 (an anthraquinone dye) by Trametes versicolor laccase immobilized on controlled porosity carrier (CPC) silica beads and the second was to analyze the kinetic effects of a non-ionic surfactant Merpol, sodium sulfate, and sodium chloride on laccase decolourization of Reactive blue 19. Decolourization of Reactive blue 19 by immobilized laccase was mainly enzymatic although dye some adsorption occurred. Decolourization led to less toxic by-products from azo and indigoid dyes whereas increased toxicity was observed for anthraquinone dyes. The feasibility of immobilizing laccase on poly(methyl methacrylate) (PMMA) through its sugar residues with a simple procedure was demonstrated and the mass of enzyme immobilized compared well with other commercial acrylic supports. The decolorization of Reactive blue 19 by laccase was inhibited by the non-ionic surfactant, Merpol by substrate depletion. A model describing this inhibition was developed and was validated by a saturated equilibrium binding experiment. While sodium sulfate (ionic strength) had no effect on either ABTS oxidation or dye decolourization, sodium chloride inhibited laccase during dye decolourization and the type and nature of the inhibition depended on the substrate. With ABTS, the inhibition was hyperbolic non-competitive whereas it was parabolic mixed with Reactive blue 19. / Thesis (Ph.D, Chemical Engineering) -- Queen's University, 2009-06-16 16:58:47.753
|
402 |
Anaerobic codigestion of municipal wastewater sludge and restaurant greaseLiu, Zengkai Unknown Date
No description available.
|
403 |
REMOVAL AND TRANSFORMATION OF GEMFIBROZIL, A PHARMACEUTICALLY ACTIVE COMPOUND, IN WASTEWATER TREATMENTKrkosek, Wendy Helen 16 December 2013 (has links)
Pharmaceutically active compounds (PhACs) have been found in wastewater effluents and receiving waters around the world. As yet there are no jurisdictions that regulate their release, or their impact on receiving water ecosystem health. The issue is complex due to the number of PhACs that exist, the variability in their structure and function, the variability in removal during different wastewater treatment processes, the potential for formation of metabolites and transformation products, and a lack of information on the impacts due to their presence on receiving waters. Gemfibrozil is a lipid regulating drug that is commonly found in wastewater effluents and receiving waters. It has been shown to partially degrade during biological wastewater treatment processes and has also been shown to produce reaction products through reactions with free chlorine.
This thesis investigated the removal and transformation of gemfibrozil through several different wastewater treatment processes, namely biological removal and chlorination. Reactions between gemfibrozil and free chlorine led to the identification of four reaction products. The structures of three of the four reaction products were elucidated. The kinetics of formation of these reaction products were then investigated at a range of pH values, and in two wastewater matrices. One reaction product, 4’-ClGem was shown to form under conditions relevant to wastewater treatment. The impacts of gemfibrozil and 4’-ClGem presence on the abundance of suspended and biofilm bacteria in a simulated receiving water experiment were evaluated. It was shown that changes in the water matrix had more of an impact on bacterial abundance than presence of gemfibrozil or 4’-ClGem. A bacterial dose-response experiment showed a negative response at 10 mg/L exposure to 4’-ClGem, which is orders of magnitude higher then what would be found in receiving waters.
In order to prevent the formation of chlorinated reaction products, it is necessary to remove gemfibrozil prior to disinfection. Recirculating biofilters (RBS), a biological technology for onsite or small-scale wastewater treatment, were explored as a potential treatment process for gemfibrozil removal. Results indicate that RBFs show promise as a robust technology to remove greater than 50% of influent gemfibrozil.
|
404 |
Health risk of growing and consuming vegetables using greywater for irrigation.Jackson, Siobhan Ann Forbes. January 2010 (has links)
Two of the challenges facing Africa in the 21st Century are effective use of restricted water resources and ensuring food security especially for poor communities. In line with these aims, the eThekwini municipality has introduced a multi-tier system of water supply ranging from full pressure reticulated systems along with flush toilets to standpipes and dry toilet systems. In the latter case, it was soon recognized that the disposal of greywater presented a problem. Bearing in mind that South Africa is already a water scarce region, research was initiated into finding means of using this water as a resource rather than as a waste. Initial on-site trials using the greywater to irrigate crops proved popular and it was then regarded as necessary to test the possible health effects on the communities of such a system. A controlled field trial using pot plantings of a selected range of edible vegetables was initiated at the University of KwaZulu-Natal. Crops were tested both internally and externally for a range of indicator and potentially pathogenic organisms. Quantitative Microbial Risk Assessment (QMRA) techniques were used to assess the health risk to communities from growing and eating the greywater- irrigated vegetables. Although there was a health risk related to most of the activities, especially the handling of the greywater itself, the risks could be brought within the World Health Organisation guidelines of less than one case of disease per 10 000 people per year by the implementation of simple barrier interventions. The greywater irrigated crops themselves, did not present a statistically higher risk of infection than the crops irrigated with either hydroponic solution or tap water. These findings show the importance of applying QMRA to each case to determine health risk. This would allow the productive use of greywater and other water sources in the correct circumstances, thus providing food sustainability for people who currently do not have access to the levels of high purity water currently recommended for agriculture. / Thesis (M.Sc.)-University of KwaZulu-Natal, Westville, 2010.
|
405 |
Investigation of endocrine disrupting compounds in membrane bioreactor and UV processesYang, Wenbo 12 January 2010 (has links)
Endocrine disrupting compounds (EDCs) in the environment have recently emerged as a major issue in Canada and around the globe. The primary objective of this thesis was to investigate the fate of EDCs in two wastewater treatment processes, membrane bioreactors (MBRs) and ultraviolet (UV) disinfection. Two submerged MBR systems using hollow fiber membranes from two membrane manufacturers were tested. The results from a bench-scale and a pilot scale MBR for the treatment of swine wastewater with high concentration of EDCs showed that over 94% of the estrogenic activity (EA) in the influent was reduced through the MBR process. Biological degradation was the dominant removal mechanism for the removal of EDCs in MBRs. Over 85% of the influent EA was reduced by biodegradation through the MBR process. The other MBR system was built to study the removal mechanisms of two estrogens in a hybrid MBR with the addition of powdered activated carbon (PAC). The effects of PAC dosing on MBR overall performance was studied as well. It was found that PAC dosing could increase the removal rates of 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) by 3.4% and 15.8%, respectively and result in a slower rate of trans-membrane pressure (TMP) increase during MBR operation, which could significantly reduce the operating cost for membrane cleaning and/or replacement. The operating cost for PAC dosing could be offset by the benefit achieved from reducing the cost for membrane maintenance. The slower rate of TMP increase in the PAC-MBR was associated with the lower concentrations of soluble extracellular polymeric substances and colloidal organic compounds in the PAC-MBR sludge.
The degradation kinetics of three estrogens, estrone (E1), E2, and EE2 in de-ionized water by UV irradiation was studied. The experimental results showed both the apparent concentrations and overall EA of all three investigated estrogens in water decreased with direct UV irradiation. To further study the impact of UV on the overall EA of wastewater, the EA of pre-UV and post-UV samples from five wastewater treatment plants were measured in both liquid and solid phase by Yeast Estrogen Screen assay. It was found that the EA of wastewater decreased after UV disinfection in three of the investigated plants whereas it increased in the other two plants. This observation needs to be further studied because it might have significant impacts on the application of UV systems for wastewater disinfection.
|
406 |
Assessment of waters with complex contamination : Effect-based methods for evaluating wastewater treatment requirements and efficiencyRibé, Veronica January 2012 (has links)
The access to clean water is one of the prerequisites for a modern, industrialized society. The amount of water withdrawn for human activities has risen exponentially during the last 100 years. This rise in water use is accompanied by the production of vast quantities of contaminated water. These wastewaters may be contaminated by substances ranging from heavy metals and organic compounds to nutrients like nitrogen and phosphorous. The aggregate effect of combinations of water contaminants can be difficult to predict as different contaminant substances may interact, leading to additive, synergistic or antagonistic toxic effects in a receiving aquatic ecosystem. With increasing water quality legislation, the pressure to characterize and potentially treat contaminated waters increases. Suitable effect-based assessment methods may greatly reduce the costs of both the wastewater characterization process and the water treatment evaluation. The overall aim of this thesis was to show how a combination of ecotoxicity bioassays may be employed in water treatment method development for initial characterization, assessment of treatment requirements and finally treatment evaluation. The wastewaters characterized originated from different activities such as waste management, metal surfacing and explosives destruction. To fully assess the hazard of the waters sampled, a holistic approach using a combination of chemical tests and bioassays was taken. A combination of acute and chronic assays was used to determine mode-of-action effects and apical endpoints in the aquatic environment. The basic battery consisted of the acute Vibrio fischeri test, the chronic algae test using Pseudokirchneriella subcapitata and either the planktonic crustacean Daphnia magna (for aqueous samples) or the meiobenthic crustacean Heterocypris incongruens (for whole-sediment/soil samples). In addition to the basic test battery, the mode-of-action Salmonella typhimurium test was used to assess genotoxic effects. Results from the water hazard characterization show that ecotoxicological tests contribute to the evaluation of treatment methods for complex wastewaters by assessing the aggregate biological effect of water treatment. The tests may be used as a screening method to indicate where further treatment may be required, even when chemical measurements show a satisfactory reduction of known contaminants. The toxic effect exerted by the assessed waters did not always correlate with measured levels of contaminants or the chemical measures of bioavailability, e.g. leached fraction. The water treatment evaluation showed that the industrial by-product pine bark is an effective adsorbent for capturing metal contaminants from landfill leachates and stormwater. The pine bark column filter had higher zinc removal efficiency than the polonite filter and the combination filter column with pine bark/polonite. In conclusion, a pine bark filter is a suitable alternative to activated carbon for small-scale, decentralized treatment of wastewaters. Furthermore, the ecotoxicity tests were able to detect effects of unknown contaminants and provided unique characterization data, which complemented the information provided by the chemical analyses. / CLEAN / BIOREX
|
407 |
Monitoring the Impact of Scott Base in Antarctica: A Recent Evaluation of Wastewater, Water and Soil Quality at Pram Point, Ross Island.Williams, Thomas Mervyn January 2012 (has links)
Antarctica is widely perceived as the most untouched continent on Earth. However, increasing anthropogenic presence in Antarctica is creating continual pressure on the pristine environment. To protect the Antarctic environment, monitoring and reporting procedures must be a priority for Nations wishing to conduct research on the continent. A significant contributor to environmental degradation is poor waste management and waste disposal, in particular the discharge of sewage and wastewater into the marine environment. This study provides information on the potential impact of Scott Base wastewater on the local marine environment, which can be used to improve operating systems and as a tool to ultimately reduce the environmental footprint of the base.
This study investigated the characteristics of the sewage from Scott Base, Antarctica, and the water quality within the wastewater discharge plume beneath the sea ice. Results from seawater analysis were then compared with Redvers (2000) to give an indication of how contamination levels have changed over the last decade. Results show that in the vicinity of the wastewater outfall, seawater samples contained no faecal coliforms or Escherichia coli. Nitrate-Nitrogen (NO3ˉ- N) concentrations were recorded up to 1.1 mg/L, while phosphate (PO43-) ranged from 0.28 to 0.45 mg/L. The pH ranged from 7.84 to 7.92. Dissolved oxygen ranged between 10.05 and 13.02 mg/L, and conductivity between 48.4 to 55.2 mS/cm. Concentrations of copper (Cu), manganese (Mn), and zinc (Zn) were greatest at sites within 30m of the outfall. Iron (Fe) and nickel (Ni) were detected at most sites within the plume. The general spatial extent of the plume is now approximately 50m long-shore, and 30m offshore. Compared to Redvers (2000) the current plume is more localised, with a reduction of approximately 100-125m long-shore and 10-20m offshore. Faecal coliforms have reduced to no longer be detected within the plume, while dissolved oxygen and total organic carbon concentrations in the plume have increased, and conductivity has decreased.
Soils surrounding Scott Base were also investigated as a potential source of trace metal (As, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) discharge to the marine environment. Total recoverable soil metal concentrations and readily leachable metal concentrations were measured. Sites were selected on the basis of being potential sources of contamination (fuel storage areas or refuelling areas), or potentially effecting the marine environment (shorelines). Results show that the greatest concentrations of metals and readily leachable metals were found primarily along the shoreline, and not necessarily where contamination related to current base activities is likely to occur. The results indicate that historic contamination may still persist in the terrestrial environment, and has the potential to be transported into the marine environment.
Domestic and drinking water samples were analysed for trace metals and nutrients to ensure that contaminants from the wastewater outfall were not entering the reverse osmosis plant. Results show that the drinking water meets New Zealand Drinking Water Standards (Ministry of Health, 2008).
|
408 |
Seeing sanitation:a social scientific account of Christchurch’s post-quake sanitary infrastructure.Butler, Andrew George January 2012 (has links)
This thesis is about many things, not least of all the September 4th 2010 and February 22nd 2011 earthquakes that shook Christchurch, New Zealand. A city was shaken, events which worked to lay open the normally invisible yet vital objects, processes and technologies which are the focus of inquiry: the sewers, pipes, pumps, the digital technologies, the land and politics which constitute the Christchurch wastewater networks. The thesis is an eclectic mix drawing together methods and concepts from Bruno Latour, John Law, Giles Deleuze and Felix Guattari, Nigel Thrift, Donna Haraway and Patrick Joyce. It is an exploration of how the technologies and objects of sanitation perform the city, and how such things which are normally hidden and obscured, are made visible. The question of visibility is also turned toward the research itself: how does one observe, and describe? How are sociological visibilities constructed? Through the research, the encountering of objects in the field, the processes of method, the pedagogy of concepts, and the construction of risk, the thesis comes to be understood as a particular kind of social scientific artefact which assembles four different accounts: the first regards the construction of visibility; the second explores Christchurch city from the control room where the urban sanitary infrastructures are monitored; the third chapter looks at the formatted and embodied practices which emerge with the correlation of the city and sanitation; the fourth looks at the changing politics of a city grappling with severely damaged essential services, land and structures. The final chapter considers how the differences between romantic and baroque sensibilities mean that these four accounts elicit knowing not through smoothness or uniformity, but in partiality and non-coherence. This thesis is about pipes, pump stations, and treatment plants; about the effluent of a city; about the messiness of social science when confronted by the equally messy world of wastewater.
|
409 |
Wood Drying Condensate Treatment Using a Bio – Trickling Filter with Bark Chips as a Support MediumKristiono, Arie January 2009 (has links)
The kiln drying of wood produces huge amounts of vapour. The vapour is released to the environment when the process purges some of the saturated hot air. The main environmental issue regarding the use of kiln drying process are the release of the water vapour which contains organic contaminants. Some of them are hazardous to human health. In addition, there are some wood particles which may released with the water vapour purging process.
In this research, the vapour is condensed and analysed for its organic contaminants and their biodegradability. The result showed that the dominant contaminants present in the condensate were ethanol and methanol with the concentration of approximately 65 mg/L and 25 mg/L respectively. The average COD concentration of the condensate was 159 ± 40 mg/L. The analysis also showed that the contaminants were biodegradable.
In order to treat the wastewater, a trickling filter process using bark chips as a support medium was used to treat an artificial wastewater. The artificial wastewater contained the dominant contaminant present in the wood drying condensate. In the experiment, different sizes of bark chips were used. In addition, the loading rate of the treatment system was varied by changing the flow rate and contaminant concentration.
The 30 cm long trickling filter using bark chips varying between of 2.8 – 4 mm diameter as the support medium gave a maximum removal of 36.4 % with removal capacity of 8.34 kg COD/m³bed•day at a flow rate of 2.8 cm/min and average inlet COD load of 20.4 kg COD/m3bed•day. The trickling filter with bark chips varying between 5.6 – 8 mm diameter as the support medium was operated using variations in contaminant concentration and flow rate. The operation using different inlet concentration gave the highest removal rate of 13.5 kg COD/m3bed•day at average initial load of 84.9 kg COD/m³bed•day, flow rate of 2.8 cm/min and theoretical initial concentration of 680 mg/L. The trickling filter operated with flow rate variation showed the highest removal rate of 10 kg COD/m³bed•day at an average inlet load of 53.3 kg COD/m³bed•day and flow rate of 7.1 cm/min.
The removal rate of the contaminants in treatment was limited. There is a number of possible explanations. First is the active surface area, which indicating the area where the contact between the biofilm surface and feed happened. The active surface area increased as the flow rate increased. Second is the residence time of the feed in the bed. The residence time of the feed varied with the flow rate. It decreased as the flow rate increased. Third is the influence of the contaminants in the feed. The presence of methanol and methanol in the feed inhibited each other’s degradation.
The dimention of a full-scale biotrickling filter to be used in actual kiln was also estimated. The estimation was made based on the maximum removal rate and optimum flow rate obtained in the experiments. The result of the estimation showed to obtain significant removal, the required bed would have to be 2.35 m in diameter and 160 in height.
|
410 |
Future Strategy for Wastewater Treatment at Skärblacka MillBrusved Andersson, Linnea January 2014 (has links)
To replace nonrenewable materials, glass, plastics and metals, at the market the production of the environmental friendly material paper needs to increase numerously. An increased paper production leads to an enlarged wastewater flow at the paper mill and thereby higher surface load in the biologicalwastewater plant. Higher surface load in turn, leads to lower efficiency and higher emissions. To be able to increase the capacity of the paper production, the wastewater flow to the biological wastewater treatment needs to be decreased. In this thesis, the wastewater at Skärblacka mill has been studied to identify how to increase the production without increasing the flow of wastewater to the biological wastewater treatment. Different wastewater has been studied to identify sufficient clean wastewater flows that today are directed to the biological wastewater treatment. The outcome of this thesis is that up to 600 m3/h wastewater could be removed from the biological wastewater treatment due to sufficiently high purity. This outcome is primarily based on measurements of the emission parameters, Total Organic Carbon, Suspended Solids, Total Phosphorus and Total Nitrogen and the calculation of PEC/PNEC, environmental assessment, for the chemicals in the wastewater. The unload of up to 600 m3/h will contribute to an increased efficiency in the biological wastewater treatment and thereby lower emissions. Increased efficiency and lower levels of emissions will in turn contribute to a possibility to increase the paper production at Skärblacka mill without interfering withenvironmental demands.
|
Page generated in 0.0551 seconds