421 |
The Physiology Of Microorganisms In Enhanced Biological Phosphorous RemovalSaunders, Aaron Marc Unknown Date (has links)
Enhanced biological phosphorus removal (EBPR) is a biological wastewater treatment process facilitated by polyphosphate-accumulating organisms (PAO). The absence of isolates that have the PAO phenotype has limited the scope of studies into the physiology of these industrially significant and metabolically unique organisms. This thesis outlines findings into the physiology and ecology of EBPR in mixed microbial cultures, which contribute to the fundamental understanding of the process. The first experimental approach used in these studies was to investigate the microbial abundance of identified PAOs and GAOs in full-scale and lab-scale EBPR processes, and correlate these data with chemical monitoring methods both at a macroscale and microscale. The macroscale studies consisted of process optimisation experiments that found propionate to be a more effective and stable carbon source than acetate. The microscale study investigated the activity of Competibacter, growing in dense aggregates. This study discovered that the structure of the granules affected the distribution of activity by limiting the supply of oxygen and that the activity of the Competibacter in turn affected the structure of the aggregate. The second experimental approach was to target key facets of the microbial physiology of PAOs and GAOs at a molecular level. Environmental gene expression studies were used to investigate the stimulus for the expression of a putative Accumulibacter polyphosphate kinase gene (ppk). This study found that the expression of this gene was repressed by high external phosphate concentrations, which suggests that the pho regulon is functioning in Accumulibacter. In another study, previously published models were integrated and elaborated to develop a model for the membrane transport processes in PAOs and GAOs, which give them the unique ability to sequester VFA without an electron acceptor. These studies confirmed that the proton-motive force (PMF) drives the uptake of VFA by both PAOs and GAOs and postulated fundamental differences in the molecular mechanisms that PAOs and GAOs use to create a PMF in the absence of respiratory electron transport. The studies also explain the molecular basis for findings in other studies that PAOs have a competitive advantage over GAOs at increased pH. The third experimental approach was to attempt to isolate organisms significant to EBPR. Some measure of success was achieved: colonies of Competibacter were obtained in pure culture but the growth could not be sustained further than the growth of micro-colonies just visible to the eye. EBPR microbiology, like many other subjects of inquiry in environmental microbiology, has benefited greatly from developments in molecular methods to identify and describe microbial communities. However, the investigation of microbial physiology in the environment remains a challenge; this thesis has taken up that challenge. Discoveries regarding the benefits of propionate as a carbon source and the basis for the competitive advantage that PAOs derive from an increased pH have potential application for practitioners of EBPR plants. Furthermore the findings make a contribution to the fundamental understanding of the physiology of EBPR organisms that may in the future lead to entirely novel approaches to EBPR optimisation.
|
422 |
An environmental feasibility study of land based sewage effluent disposal at Bolivar using plantation trees /Yu, Xiaojiang. January 1992 (has links) (PDF)
Thesis (M. Env. St.)--University of Adelaide, Mawson Graduate Centre for Environmental Studies, 1992. / Photographs mounted in. Includes bibliographical references (leaves 91-96).
|
423 |
Ultraviolet disinfection system for constructed wetlands /Ly, Jong Chan. January 1900 (has links)
Thesis (M.S.)--Humboldt State University, 2008. / Includes bibliographical references (leaves 40-44). Also available via Humboldt Digital Scholar.
|
424 |
Evaluation of land application of wastewater as a nutrient reduction control strategy in the Chesapeake Bay watershedWilliams, Marlyse K. January 2006 (has links)
Thesis (M.C.E.)--University of Delaware, 2006. / Principal faculty advisor: William Ritter, Dept. of Civil & Environmental Engineering. Includes bibliographical references.
|
425 |
Επεξεργασία αγρο-βιομηχανικών αποβλήτων και απομόνωση πολυφαινολών με τεχνολογία μεμβρανώνΖάγκλης, Δημήτριος 07 June 2013 (has links)
Η παρούσα εργασία είναι χωρισμένη σε τέσσερις θεματικές ενότητες. Στην πρώτη ενότητα παρουσιάζονται οι βασικές φυσικοχημικές μέθοδοι επεξεργασίας που χρησιμοποιήθηκαν, οι οποίες είναι η κροκίδωση/καθίζηση και η διήθηση με μεμβράνες, καθώς και οι βασικές αρχές που τις διέπουν.
Η δεύτερη ενότητα της παρούσας εργασίας αποτελείται από την παρουσίαση εφαρμογών της τεχνολογίας μεμβρανών σε συνδυασμό με απόσταξη υπό κενό και διάφορα προσροφητικά μέσα για την αντιμετώπιση προβλημάτων της οινοποιίας. Πιο συγκεκριμένα, εξετάστηκε η αφαίρεση πτητικής οξύτητας από ερυθρό και λευκό οίνο, που οδήγησε σε συνολική απομάκρυνση της τάξεως του 90%, καθιστώντας τον οξειδωμένο οίνο κατάλληλο προς πώληση. Επίσης εξετάστηκε η απομόνωση αιθανόλης και ταυτόχρονη παραγωγή οίνου με μειωμένο περιεχόμενο σε αλκοόλ. Με την προτεινόμενη μέθοδο παρήχθει διάλυμα αιθανόλης 23% vol και οίνος με μειωμένο αλκοόλ 6.7% vol. Τρίτη και τελευταία εφαρμογή ήταν η αφαίρεση αναγωγικών οσμών από λευκό οίνο, η οποία επιτεύχθηκε πλήρως με τη χρήση φίλτρου ενεργού άνθρακα.
Στην τρίτη ενότητα παρουσιάζεται μια διεργασία επεξεργασίας αποβλήτου βιομηχανίας χρωμάτων με το συνδυασμό ενός βήματος κροκίδωσης/καθίζησης με μεμβράνες υπερδιήθησης και αντίστροφης ώσμωσης. Το τελικό διήθημα της διεργασίας, από περίπου 20000 mg/l COD που είχε το αρχικό απόβλητο, έχει περίπου 50 mg/l COD, γεγονός που το καθιστά κατάλληλο για ανακύκλωση στη βιομηχανία, ή απόρριψη στο περιβάλλον.
Στην τέταρτη και τελευταία ενότητα παρουσιάζεται μια συγκριτική ανάλυση και ανάλυση βιωσιμότητας των διαθέσιμων μεθόδων επεξεργασίας αποβλήτου ελαιοτριβείου, βασισμένες στην αποδοτικότητα, το κόστος και το ενεργειακό αποτύπωμα της κάθε μεθόδου. Τέλος παρουσιάζεται μια μέθοδος επιλογής της καταλληλότερης μεθόδου επεξεργασίας σύμφωνα με τη βαρύτητα που δίνει κάποιος σε κάθε ένα από τα τρία προαναφερθέντα χαρακτηριστικά. / The present study is divided into four chapters. In the first chapter the psychochemical treatment methods that were used with the underlying basic principles are presented. These methods include coagulation/flocculation and membrane filtration.
The second chapter is concerned with the implementation of membrane filtration, combined with vacuum evaporation and adsorption materials, in order to address problems occurring in winery processes. More specifically, the removal of volatile acidity from red and white wine was tested, leading to its reduction by 90%, rendering oxidized wine suitable for distribution. Furthermore, the removal of ethanol and the production of low alcohol wine were tested. Through the proposed method, a solution with 23% vol of ethanol and wine with 6.7 vol % were produced. Third and last application was the removal of odors from white wine, which was accomplished through the use of activated carbon.
In the third chapter a process for the treatment of paint industry effluents with the combination of coagulation/flocculation with Ultrafiltration and Reverse Osmosis membranes is presented. The final effluent, compared to the initial COD which was around 20000 mg/l, had a 50 mg/l COD and was suitable for recycling in the industrial process or to be rejected to the environment.
In the fourth and final chapter a sustainability analysis and benchmarking of the existing treatment methods of Olive Mill Wastewater is presented, based on their effectiveness, cost and CO2 emissions. Finally, a selection technique for the most suitable method is presented, based on the weight given to each one of the aspects given above, by the user.
|
426 |
Impact of pre-ozonation on distillery effluent degradation in a constructed wetland systemGreen, Jeffrey 12 1900 (has links)
Thesis (Msc Food Sc (Food Science))--University of Stellenbosch, 2007. / Distilleries are an example of an agricultural industry that generates large volumes of wastewater. These wastewaters are heavily polluted, and due to the seasonal nature of the product, the amount and composition of the wastewater may exhibit major daily and seasonal variations. Wine-distillery wastewaters (WDWWs) typically are acidic (pH 3.5 - 5.0) and have a high organic content (sugars, alcohol, proteins, carbohydrates and lipids), a COD range of 10 000 – 60 000 mg.L-1, have a high suspended solids content as well as containing various inorganic compounds. Additionally refractory compounds present in these wastewaters, such as polyphenols, can be toxic for biological processes, making the selection of a suitable treatment process problematic. Wetlands have been shown to be a feasible treatment for effluent originating from wine, however, they are normally used as a secondary treatment method and not well suited for high volume, high COD (> 5 000 mg.L-1) wastewaters. Ozone has been successfully used as a pre-treatment for WDWW due to its oxidising capabilities to partially biodegrade organics and non-biodegradable organics, and reduce polyphenols, which results in an increase in biodegradability. Currently a wetland system is being used on its own at a distillery to treat wastewater from a series of stabilisation dams, but the legal requirement for discharge into a natural resource (COD < 75 mg.L-1) is not being met. Additional treatments suited for WDWW are therefore being considered.
Wine-distillery wastewater was characterised and found to show a large variation over time (COD ranging from 12 609 - 21 150 mg.L-1). Ozonation of WDWWs was found to be effective in decreasing COD over a wide range of organic loads. For pre-wetland wastewater from the distillery, an average COD reduction of 271 mg COD.g O3-1 was found, and for post-wetland effluent, an average of 103 mg COD.g O3-1. The effect of ozone on the biodegradability of the wastewater was monitored by activity tests, and a low ozone dose (200 - 400 mg O3.L-1) was found to increase activity in terms of biogas, methane and cumulative gas volumes. By showing an increase in the biodegradability of WDWW, it was concluded that ozone has potential as a pre-treatment step to increase the effectiveness of a biological wetland system.
Lab-scale wetlands were used in trials to determine the effect of pre- and post-ozonation on WDWW. It was found that the efficiency of the wetland receiving the pre-ozonated “off-season” WDWW (2 200 mg COD.L-1) had a higher COD reduction (73%) than the wetland fed with untreated (62% COD reduction) WDWW, and the total polyphenol content was reduced by 40 and 31%, respectively. Treatment efficiency in terms of the reduction of colour, total solids, suspended solids and phosphates were also greatly improved for the pre-ozonated WDWW. Similar results were found when treating high COD “peak season” (7 000 mg COD.L-1) WDWW, with higher reduction rates for the wetland treating pre-ozonated WDWW (84% COD reduction) than for the wetland fed with untreated WDWW (74% COD reduction), and the total polyphenol content was reduced by 76 and 72%, respectively. Post-ozonation was also shown to be beneficial in that it improved the final effluent quality leaving the wetland system. Increasing the hydraulic retention time (HRT) of the wetlands from 9 days to 12 days resulted in similar COD reductions for the control and experimental wetland, highlighting the benefits that pre-ozonation has on reducing the acclimatisation period. Therefore using ozone as a pre-treatment could help in reducing the wetland size, HRT and allow increased volumes of wastewater to be treated.
In this study ozone was successfully utilised to reduce COD levels in wine-distillery wastewater, and increase the biodegradability of the wastewater. This study also showed that ozone, used as a pre-treatment to a wetland system, can contribute to improving the performance of a wetland system in terms of higher removal efficiencies. Wetlands are, however, unsuited for treating high strength COD wastewater, and the final effluent was still well above the South African legal limit for direct discharge into a natural resource. The results obtained during this study contributed to developing a method to achieve a more efficient treatment system utilising wetlands for the distillery industry, and can be of value in facilitating efficient environmental management.
|
427 |
Systems approaches to enhance performance and applicability of microbial fuel cellsBoghani, Hitesh Chandubhai January 2014 (has links)
Wastewater treatment is an energy intensive process and sustainable processes/technologies for the treatment of wastewaters need to be considered. One such contender might be the microbial fuel cell (MFC), a subset of bioelectrochemical system (BES) which generates electricity in the process of electrogenic (generating electrons) degradation of soluble organic contaminants present in the water (or wastewater) by electrogens (electron producing bacteria) at the anode in absence of oxygen. Several issues related to the power performance (also somewhat linked to the cost) of MFCs exist causing barriers in the deployment of up-scaled MFC system and the continual research from a multitude of discipline is focusing on overcoming these issues. Implementation of an MFC system for wastewater treatment would require a large array of MFCs to meet the treatment capacity of the wastewater treatment plant. Commissioning and continual operation of such MFCs would require rapid and cost-effective start-up and improvement in their performance. Optimisation of the power performance is addressed through a systems approach in this study, where improvement in the performance is sought through the system design and control strategies applied to the MFCs. The start-up rate of MFCs has been reduced by 45% using maximum power point tracking (MPPT), which is believed to be cost-effective as exogenous energy (such as in the case of poised-potential) is not required for the rapid start-up. The control of MFC power would need to be considered when up-scaled MFC system is realised. The controller implementation benefits from linearised system models. The viability of such piecewise linearisation of the nonlinear MFC system was demonstrated and the data were shown to be reasonably represented by the 1st order process models throughout its operating range. The occurrence of voltage reversal during stack operation of MFCs is a concern in large arrays particularly, and has been shown to be avoidable by adopting the hybrid stack connectivity. Further enhancement of the performance was sought through the detailed design and fluid dynamics modeling to obtain highly mixed anolyte at low input power, using improved helical anodes which increased the MFC performance at all the tested flow rates (1, 3 and 8 mL min-1) compared to previously studied helical anodes. The up-scaling of MFCs by modularisation was demonstrated and it was shown that the use of improved helical anodes can increase the modular length of the MFC without compromising the power performance. Aggregated power produced from the multi-module MFC (containing 5 modules) was 28.05 ± 3.5 mW (19.75 ± 2.47 W m-3) with an PhD Thesis – Hitesh Chandubhai Boghani 2014 V individual MFC power of 5.61 ± 0.7 mW, when fed with 10 mM sodium acetate at 3 mL min-1 flow rate and at 22 ± 3 °C. So, this thesis presents the strategies for improvement in the performance of MFCs for their applications in wastewater treatment and such strategies may also be transferable to their other applications.
|
428 |
QUALITATIVE AND QUANTITATIVE PROCEDURE FOR UNCERTAINTY ANALYSIS IN LIFE CYCLE ASSESSMENT OF WASTEWATER SOLIDS TREATMENT PROCESSESAlyaseri, Isam 01 May 2014 (has links)
In order to perform the environmental analysis and find the best management in the wastewater treatment processes using life cycle assessment (LCA) method, uncertainty in LCA has to be evaluated. A qualitative and quantitative procedure was constructed to deal with uncertainty for the wastewater treatment LCA studies during the inventory and analysis stages. The qualitative steps in the procedure include setting rules for the inclusion of inputs and outputs in the life cycle inventory (LCI), setting rules for the proper collection of data, identifying and conducting data collection analysis for the significant contributors in the model, evaluating data quality indicators, selecting the proper life cycle impact assessment (LCIA) method, evaluating the uncertainty in the model through different cultural perspectives, and comparing with other LCIA methods. The quantitative steps in the procedure include assigning the best guess value and the proper distribution for each input or output in the model, calculating the uncertainty for those inputs or outputs based on data characteristics and the data quality indicators, and finally using probabilistic analysis (Monte Carlo simulation) to estimate uncertainty in the outcomes. Environmental burdens from the solids handling unit at Bissell Point Wastewater Treatment Plant (BPWWTP) in Saint Louis, Missouri was analyzed. Plant specific data plus literature data were used to build an input-output model. Environmental performance of an existing treatment scenario (dewatering-multiple hearth incineration-ash to landfill) was analyzed. To improve the environmental performance, two alternative scenarios (fluid bed incineration and anaerobic digestion) were proposed, constructed, and evaluated. System boundaries were set to include the construction, operation and dismantling phases. The impact assessment method chosen was Eco-indicator 99 and the impact categories were: carcinogenicity, respiratory organics and inorganics, climate change, radiation, ozone depletion, ecotoxicity, acidification-eutrophication, and minerals and fossil fuels depletion. Analysis of the existing scenario shows that most of the impacts came from the operation phase on the categories related to fossil fuels depletion, respiratory inorganics, and carcinogens due to energy consumed and emissions from incineration. The proposed alternatives showed better performance than the existing treatment. Fluid bed incineration had better performance than anaerobic digestion. Uncertainty analysis showed there is 57.6% possibility to have less impact on the environment when using fluid bed incineration than the anaerobic digestion. Based on single scores ranking in the Eco-indicator 99 method, the environmental impact order is: multiple hearth incineration > anaerobic digestion > fluid bed incineration. This order was the same for the three model perspectives in the Eco-indicator 99 method and when using other LCIA methods (Eco-point 97 and CML 2000). The study showed that the incorporation of qualitative/quantitative uncertainty analysis into LCA gave more information than the deterministic LCA and can strengthen the LCA study. The procedure tested in this study showed that Monte Carlo simulation can be used in quantifying uncertainty in the wastewater treatment studies. The procedure can be used to analyze the performance of other treatment options. Although the analysis in different perspectives and different LCIA methods did not impact the order of the scenarios, it showed a possibility of variation in the final outcomes of some categories. The study showed the importance of providing decision makers with the best and worst possible outcomes in any LCA study and informing them about the perspectives and assumptions used in the assessment. Monte Carlo simulation is able to perform uncertainty analysis in the comparative LCA only between two products or scenarios based on the (A-B) approach due to the overlapping between the probability distributions of the outcomes. It is recommended to modify it to include more than two scenarios.
|
429 |
Vers un procédé Fenton hétérogène pour le traitement en continu d’eau polluée par des polluants pharmaceutiques / To a heterogeneous Fenton process for continuous treatment of pharmaceutical wastewatersVelichkova, Filipa Aleksandrova 20 January 2014 (has links)
Ce travail a pour objectif de développer un procédé couplant séparation membranaire et oxydation (photo-) Fenton hétérogène pour l’élimination du paracétamol dans l’eau. La réaction a d’abord été étudiée avec le fer en solution à pH acide (2,6) pour servir de référence aux études hétérogènes ultérieures. La méthodologie des plans d’expériences a permis de déterminer les paramètres influents (parmi température, concentrations d’oxydant et de catalyseur) et leurs interactions, et de modéliser les performances du procédé homogène. Des oxydes de fer sous la forme de particules nano- et micro-structurées (hématite, maghémite et magnétite) ou supportés sur zéolithes (type MFI ou BEA) ont ensuite été testés comme catalyseurs de l’oxydation Fenton. Pour chaque système étudié, on a évalué la conversion du polluant et du Carbone Organique Total (COT), mais aussi la stabilité du catalyseur : quantité de fer lixivié et activité du métal passé en solution (pour découpler la contribution du mécanisme homogène associé). L’effet des paramètres opératoires a ensuite été à nouveau évalué pour les catalyseurs sélectionnés (magnétite nanostructurée et Fe/MFI). Pour l’oxyde non supporté, l’étude met en évidence le rôle positif d’une augmentation de la température. A température et pH donnés, le rapport initial [oxyde de fer] / [H2O2] apparaît aussi comme le paramètre essentiel qui contrôle le taux de minéralisation, avec une inhibition de la réaction lorsque H2O2 est en trop large excès. Au contraire, pour le catalyseur Fe/MFI, une augmentation de la concentration d’oxydant se révèle bénéfique (sa consommation étant pratiquement totale dans tous les cas), et il y a peu d’effet de la température. Par ailleurs, la magnétite se révèle efficace à pH acide uniquement, tandis que le catalyseur supporté présente la même activité avec ou sans acidification préalable. L’irradiation UV améliore les performances de ces deux catalyseurs avec un abattement du COT en solution jusqu’à 70% en 5 heures, contre 98% pour le système homogène dans des conditions similaires. Les premiers tests en continu avec des particules de Fe/MFI retenues par une membrane d’ultrafiltration immergée sont prometteurs, puisque l’activité est restée stable pendant plus de 40 h. / This work aims to develop a process coupling membrane separation and heterogeneous (photo-) Fenton oxidation for the elimination of paracetamol in water. The reaction was first studied with dissolved iron in acidic solution (pH 2.6), as a reference for the subsequent heterogeneous studies. The methodology of experimental design was used to determine the significant parameters (including temperature, oxidant and catalyst concentrations) and their interactions, and to model the performance of the homogeneous process. Iron oxides as nano- and micro-structured particles (hematite, maghemite and magnetite) or supported on zeolites (MFI or BEA type) were then tested as catalysts for the Fenton oxidation. For each studied system the conversions of pollutant and Total Organic Carbon (TOC) were evaluated, as well as the catalyst stability: amount and activity of leached iron (in order to decouple the contribution of homogeneous mechanism). The effect of process parameters was then again evaluated for the selected catalysts (nanostructured magnetite and Fe/MFI). For magnetite, the study reveals a positive effect of temperature. At given temperature and pH, the initial ratio of [iron oxide] to [H2O2] also appears as a key parameter that controls the mineralization yield, with an inhibition of the reaction when H2O2 is in large excess. Conversely, for Fe/MFI catalyst, the increase in oxidant concentration is beneficial (oxidant being almost fully consumed in all cases), and temperature has a poor effect. Furthermore, magnetite is only effective at acidic pH, while supported catalyst exhibits same activity with or without prior acidification. UV irradiation improves the performance of these catalysts with a reduction of TOC in solution up to 70% within 5 hours, against 98% for the homogeneous system under similar conditions. The results of the first continuous test, performed with Fe/MFI particles retained by a submerged ultrafiltration membrane, are promising: a stable activity has been observed for over 40 h.
|
430 |
Tratamento do Efluente Gerado nas Atividades de Limpeza de Caminhões de Lixo / Effluent treatment of garbage trucks cleaningZilton José Sá da Fonseca 23 June 2006 (has links)
Este estudo abordou o tratamento de efluentes gerados na operação de lavagem de caminhões de coleta de lixo do tipo IIA e IIB, conforme a NBR 10.004. Os ensaios foram realizados na estação de tratamento localizada na garagem da empresa Koleta Ambiental, Rio de janeiro. Em face dos grandes volumes de água exigidos para a limpeza dos caminhões foi realizado ensaio de tratabilidade a fim de definir qual o método de tratamento mais adequado para o efluente. Foram ensaiados os métodos físico-químico, biológico e ultrafiltração com membrana. O objetivo final era verificar a qualidade da água para posterior reuso a fim de diminuir o desperdício de se usar água potável para a lavagem de caminhões de lixo. Os resultados mostraram-se satisfatórios, porém há a necessidade de se aprofundar a pesquisa para enquadramento de vários parâmetros de qualidade nos padrões das das Resoluções CONAMA 357 e 274, assim como melhorar a avaliação do consumo de energia no processo de filtração com a membrana. / The present study, undertaken at the site of koleta Ambiental S.A., Rio de Janeiro, a company specialized in garbage collection, was related to the tratability tests of the wastewaters generated by garbage truck cleaning. To verify the effectiveness of these tests, a sequence of treatment related to physicochemical, biological and ultrafiltration through membranes tests, was adopted. From the results, one can conclude that further investigations should be carried out, as some water quality parameters of the treated wastewaters, such as chlorides and nitrogen that still do not comply with those prescribed in CONAMA 357 and 274 resolutions. Moreover, as far as the energy consumption related to ultrafiltration tests, must be further assessed, as the results which have been obtained were not conclusive.
|
Page generated in 0.1143 seconds