• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 434
  • 67
  • 61
  • 27
  • 18
  • 15
  • 12
  • 12
  • 12
  • 12
  • 12
  • 11
  • 3
  • 2
  • 1
  • Tagged with
  • 805
  • 805
  • 166
  • 101
  • 101
  • 99
  • 99
  • 99
  • 95
  • 93
  • 92
  • 89
  • 78
  • 76
  • 71
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
471

The use of PRBs (permeable reactive barriers) for attenuation of cadmium and hexavalent chromium from industrial contaminated soil / Title on signature form: Use of permeable reactive barriers (PRBs) for attenuation of cadmium and hexavalent chromium from industrial contaminated soil

Meza, Maria I. January 2009 (has links)
Permeable reactive barriers are considered among the most promising technologies for contaminated soil and groundwater remediation. Zero-valent iron (ZVI), hydroxyapatite (HA), and organic compost, with (OM) and without (OMx) dextrose/sulfate were assessed in column studies for their ability to attenuate chromium (Cr) or cadmium (Cd). PVC columns were packed with the reactive media and Cr or Cd solutions were pumped through the columns at concentrations of 5, 50 and 200 mg/l. These media were also assessed for their abilities to attenuate Cr and Cd from a contaminated soil. The order of Cr removal was: ZVI > OMx > OM > HA. The ZVI treatment maintained a removal rate of > 95% throughout the study. All treatments used for Cd removal had a removal rate of 98% across all treatments. The ZVI was the only treatment capable of retaining any of the mobile soil Cr and Cd from the contaminated soil. / Department of Natural Resources and Environmental Management
472

Residence time methods for modelling and assessing the performance of water treatment processes.

Barnett, Jacqueline Lisa. 23 September 2014 (has links)
The objective of this study was to provide a technique, based on the residence time distribution of a process, for modelling, assessing and improving flow in the processes of water and waste water treatment works. The technique should be accessible to the staff managing and operating the works. From a review of the literature, a preference was given for the experimental method used for determination of the tracer response, including choice of tracer and tracer addition and monitoring. Data analysis techniques were reviewed, and the method of time domain fitting was developed into a computer program, IMPULSE. IMPULSE provided a tool for analysis of residence time data, and removed the constraint of numerical complexity. Using the building blocks of IMPULSE, a realistic flow model can be constructed from tracer data and evaluated. IMPULSE allows a quantitative comparison of models proposed for a process, and provides the parameters of the models. These parameters quantify the non-idealities in a process. A knowledge of the non-idealities provides a basis for decision-making when modifying a process. The results of tracer experiments performed on some water and waste water treatment processes were analysed using IMPULSE. The results showed that collection of good experimental data was critical to the success of the analysis. It is proposed that a guide be produced which draws out the main points raised in the study, including collection of tracer data and use of IMPULSE. The guide should be accessible and easily understandable to the staff managing and operating water and waste water treatment works. / Thesis (M.Sc.Eng.)-University of Natal, Durban, 1995.
473

Removal of Arsenic Using Iron Coated Limestone

Swarna, Anitha 01 May 2014 (has links)
Arsenic contamination in drinking water is a severe problem worldwide. The best way to prevent hazardous diseases from chronic arsenic exposure is to remove the exposure. Efforts to remediate arsenic in drinking water have taken two tracks. One is to provide surface or shallow well water sources as an alternative to the arsenic contaminated deep wells. Another approach is to remove arsenic from the contaminated water. Different removal technologies like oxidation, chemical coagulation, precipitation, adsorption and others are available. There are problems and benefits associated with each of these approaches that can be related to cultural, socio-economic and engineering influences. The method proposed in this research is adsorption of arsenic to iron coated limestone. Different iron coated limestone samples were prepared. Standard solutions of 100ppb arsenic were prepared and batch and kinetic experiments were conducted. The final solution concentrations were analyzed by Graphite Furnace Atomic Adsorption Spectroscopy (GFAAs) and the results showed that iron coated limestone removed arsenic below 10ppb with 5 grams of material. Variations in iron coverage impacted efficiency of arsenic removal.
474

Antibiotics in water treatment: the role of water quality conditions on their fate and removal during chlorination and nanofiltration

Shah, Amisha D. 02 September 2008 (has links)
Antibiotics are a group of compounds used in large quantities for both human therapy and animal food production. In recent years, antibiotics have been detected at low levels (up to μg/L) in wastewater effluents and surface waters in the US, Canada, and parts of Europe. The presence of such contaminants in the environment is of concern due to their potential to promote bacterial resistance as well as to trigger long-term adverse human health effects. Chemical disinfection, one of essential water treatment processes, may aid in their removal but may also form byproducts that can remain biologically active. Nanofiltration is another water treatment process that may provide an effective physical barrier for these contaminants. The goal of this study was to understand the effect chlorination and nanofiltration processes have on the fate of select antibiotics during water treatment, especially under varying water quality conditions. Changes in pH were found to significantly influence the reaction rate of one veterinary antibiotic, carbadox, with aqueous chlorine while also influencing the byproducts formed. The pH was also found to significantly alter the removal efficiency of several antibiotics by different nanofiltration membranes of varying pore size in which dependence was mechanistically investigated using transport models. In addition, the presence of tertiary amines was found to enhance transformation of antibiotics during chlorination. Overall, fundamental understanding regarding their fate during such water treatment processes will help industries develop better strategies for effectively controlling this emerging group of contaminants.
475

Grade 12 students conceptual understanding of chemical reactions: a case study of flouridation.

Mpofu, Nomathemba Victoria January 2006 (has links)
<p>The purpose of this study was to investigate grade 12 students conceptual understanding of chemical reaction using fluoridation of public water supply as a practical example of chemical reaction. The study also attempted to find out the effectiveness of concept mapping in facilitation the students understanding of chemical reaction, particularly redox reactions.</p>
476

Kinetics and mechanism of various iron transformations in natural waters at circumneutral pH.

Pham, An Ninh, Civil & Environmental Engineering, Faculty of Engineering, UNSW January 2007 (has links)
In this thesis, the implementation and results of studies into the effect of pH on the kinetics of various iron transformations in natural waters are described. Specific studies include i) the oxidation of Fe(II) in the absence and presence of both model and natural organic ligands, ii) the complexation of Fe(III) by model organic compounds, and iii) the precipitation of Fe(III) through the use of both laboratory investigations of iron species and kinetic modeling. In the absence of organic ligands, oxidation of nanomolar concentrations of Fe(II) over the pH range 6.0 -- 8.0 is predominantly controlled by the reaction of Fe(II) with oxygen and with superoxide while the disproportionation of superoxide appears to be negligible. Oxidation of Fe(II) by hydrogen peroxide, back reduction of Fe(III) by superoxide and precipitation of Fe(III) have been shown to exert some influences at various stages of the oxidation at different pH and initial Fe(II) concentrations. In the presence of organic ligands, different effects on the Fe(II) oxidation kinetics is shown with different organic ligands, their initial concentrations and with varying pH. A detailed kinetic model is developed and shown to adequately describe the kinetics of Fe(II) oxidation in the absence and presence of various ligands over a range of concentrations and pH. The applicability of the previous oxidation models to describe the experimental data is assessed. Rate constants for formation of Fe(III) by a range of model organic compounds over the pH range 6.0 -- 9.5 are determined. Variation of rate constants for Fe(III) complexation by desferrioxamine B and ethylenediaminetetraacetate with varying pH is explained by an outer-sphere complexation model. The significant variation in rate constants of Fe(III) complexation by salicylate, 5-sulfosalicylate, citrate and 3,4-dihydroxylbenzoate with varying pH is possibly due to the presence of different complexes at different pH. The results of this study demonstrate that organic ligands from different sources may influence the speciation of iron in vastly different ways. The kinetics of Fe(III) precipitation are investigated in bicarbonate solutions over the pH range 6.0 -- 9.5. The rate of precipitation varies by nearly two orders of magnitude with a maximum rate constant at a pH of around 8.0. The results of the study support the existence of the dissolved neutral species Fe(OH)30 and suggests that it is the dominant precursor in Fe(III) polymerization and subsequent precipitation at circumneutral pH. Variation in the precipitation rate constant over the pH range considered is consistent with a mechanism in which the kinetics of iron precipitation are controlled by rates of water exchange in dissolved iron hydrolysis species.
477

Kinetic modelling of Fenton-mediated oxidation: reaction mechanism, applications,and optimization.

Duesterberg, Christopher Ku, Civil & Environmental Engineering, Faculty of Engineering, UNSW January 2007 (has links)
The ever-increasing detection of harmful organic and inorganic compounds in habitable areas throughout the world has led to mounting research into applications and techniques for the treatment of contaminated soils, surface and groundwaters, and chemical and industrial wastewaters. Chemical oxidation technologies, in particular Fenton-based remediation systems, have exhibited considerable potential for the effective treatment and remediation of such contaminated waters and soils. The use of Fenton-based oxidation systems for the treatment of contaminated waters and wastewaters warrants the development of kinetic models capable of accurately simulating system behaviour. In this thesis, the kinetics of Fenton-mediated oxidation systems and kinetic models based on its governing reaction mechanism are investigated in order to highlight those parameters and conditions that effect Fenton chemistry and oxidation performance, and to demonstrate the application of such kinetic models to design and improve treatment systems. Experimental and simulated data describing the oxidation of formic acid by Fenton's reagent at low pH (3 to 4) and under a variety of initial conditions, operating regimes, and solution environments supports a proposed reaction mechanism that nominates the hydroxyl radical (OH) as the active oxidizing intermediate in Fenton-based oxidation systems. Laboratory experiments demonstrate that formic acid oxidation is inhibited in the presence of oxygen, and model simulations of these systems reveals that such behaviour is due to the effect organic radical intermediates and/or by-products have in assisting or hindering the redox cycling of the catalytic iron species. The critical role that iron redox cycling plays in affecting oxidation performance is further highlighted by experimental and simulated studies at alternate pHs and using different target organics, including those that react directly with iron in a redox capacity. Experiments at pH 4 reveal an increase in the redox cycling of iron and improved oxidation performance compared to pH 3 as the higher pH favours the superoxide radical, a stronger reductant than the hydroperoxyl radical that predominates at pH 3. Other laboratory and modelling studies on the Fenton-mediated oxidation of certain aromatic compounds highlight the manner in which quinone and quinone-like compounds, being added directly or generated as oxidation by-products, can improve oxidation performance via redox reactions with iron. Further simulations reveal the type of practical design and operating information kinetic models can provide for treatment processes, though it is noted an appropriate understanding of the oxidation mechanism of the target species is necessary for the accurate application of the model.
478

Health hazards associated with dissemination of bacterial strains in waste water recycling /

Rahman, Mokhlasur, January 2005 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2005. / Härtill 5 uppsatser.
479

Feasibility of recycling air conditioner condensate for use as process water for a manufacturing facility

Kieffer, Daniel W. January 2008 (has links) (PDF)
Thesis--University of Oklahoma. / Bibliography: leaf 39.
480

Investigating the efficacy of hydrogen peroxide agaisnt isolated environmental Escherichia coli strains

Giddey, Kirsten Francis 04 1900 (has links)
Thesis (MSc Food Sc)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: Surface water used for irrigation is often highly contaminated on a microbial level. Using contaminated surface water for the irrigation of fresh produce can lead to foodborne disease outbreaks and Escherichia coli has been a major cause of foodborne outbreaks associated with fresh produce over the past few years. There are many possible on-farm treatment options available to decrease the high microbial loads present in surface water, one of these is H2O2 and various factors can influence its use. The aim of this study was to determine the efficacy of H2O2 on different E. coli strains. Water from the Plankenburg River was sampled and treated with (250, 300 and 350 mg.L-1) H2O2 and the impact at 0, 30, 60, 90 and 120 min was then evaluated. It was found that the log reductions differed between samples. Log reductions ranged between 1.60 – 2.63 for Aerobic colony counts (ACC), total coliforms and Escherichia coli. The water was not considered safe for irrigation use although it had been treated with H2O2. Reference (ATCC) and environmental E. coli strains were individually treated with H2O2 (250, 300 and 350 mg.L-1) at 0, 30, 60, 90 and 120 min. Log reductions for the ATCC strains ranged between 2.13 – 5.48. This indicated a variation in H2O2 resistance between the different reference strains tested. Log reductions for the environmental E. coli strains ranged between 2.17 – 3.93. Escherichia coli M53 and MJ56 were the most resistant and most sensitive environmental strains to the H2O2 treatment, respectively. Once again it was observed that variations existed between the log reductions achieved for different strains. Overall, it was observed that the ATCC E. coli strains were more sensitive to the H2O2 treatments when compared the environmental strains. This indicates that ATCC strains should not be used for H2O2 treatment optimisation. Certain factors can influence the efficacy of H2O2 such as concentration and organic matter (chemical oxygen demand) present in the water. Different H2O2 concentrations were evaluated (50, 350, 700 and 1 000 mg.L-1) on two E. coli strains (M53 and W1371). Results indicated that 50 mg.L-1 was not effective as less than 1 log reduction was achieved after 120 min. When 350 and 700 mg.L-1 were used similar log reductions were achieved (1.78 – 2.27), which was not expected. Using 1 000 mg.L-1 was considered an effective concentration that resulted in no growth present after 120 min. Escherichia coli strain W1371 carried EPEC virulence factors (potential pathogen). This was included in the study in order to determine how a strain carrying virulence factors would react to H2O2. Escherichia coli W1371 was considered resistant to the H2O2 treatment and log reductions were similar to that achieved for M53. The catalase activity of the E. coli strains was studied to determine if a link existed between catalase activity and H2O2 resistance. Although a trend was observed between heat-stable catalase activity and H2O2 resistance, there were exceptions. It was concluded that high catalase activity does not always coincide with H2O2 resistance and that other mechanisms might also contribute to E. coli survival. Overall, it was observed that there are certain factors that influence the efficacy of H2O2 as a treatment option. It can be concluded that environmental E. coli strains are generally more resistant to the H2O2 treatment compared to ATCC E. coli strains, this needs to be considered when using H2O2 or other chemical disinfectants as a treatment option. / AFRIKAANSE OPSOMMING: Oppervlakwater wat gebruik word vir besproeiing is dikwels op ‘n mikrobiese vlak hoogs gekontamineer. Die gebruik van oppervlakwater vir die besproeiing van vars produkte kan tot die uitbraak van voedselgedraagde siektes lei. Escherichia coli was een van die hoofoorsake van voedselgedraagde uitbrake geassosieerd met vars produkte gedurende die laaste paar jaar. Daar is verskeie moontlike behandelingsmetodes op plaasvlak beskikbaar om die hoë mikrobiese las in oppervlakwater te verlaag. Een hiervan is waterstofperoksied (H2O2) en verskeie faktore kan die gebruik hiervan beïnvloed. Die doel van hierdie studie was om die doeltreffendheid van H2O2 op verskillende E. coli isolate te bepaal. Watermonsters uit die Plankenburg Rivier is behandel met drie konsentrasies H2O2 (250, 300 en 350 mg.L-1) en die impak is na 0, 30, 60, 90 en 120 minute geëvalueer. Daar is gevind dat die log reduksies tussen monsters verskil het. Log reduksies het gewissel tussen 1.60 en 2.63 vir aerobiese kolonietellings (AKT), totale kolivorme en E. coli. Selfs na H2O2 behandeling, is die water nie as veilig vir besproeiing beskou nie. Verwysingsisolate (ATCC) en omgewingsisolate van E. coli is afsonderlik met H2O2 behandel (250, 300 en 350 mg.L-1) vir 0, 30, 60, 90 en 120 minute. Log reduksies vir die ATCC isolate het gewissel tussen 2.13 en 5.48. Hierdie verskille dui op die variasies wat tussen die getoetste verwysingsisolate voorkom. Log reduksies vir die omgewingsisolate het gewissel tussen 2.17 en 3.93. Escherichia coli M53 en MJ56 was onderskeidelik die mees weerstandbiedende en mees sensitiewe verwysingsisolate wat getoets is. Verskille in log reduksies het daarop gedui dat isolaat variasies voorkom. In geheel is dit gevind dat die ATCC E. coli isolate meer sensitief was vir die H2O2 behandelings vergeleke met die omgewingsisolate. Dit toon dat die ATCC isolate nie gebruik moet word vir H2O2 behandeling optimering nie. Sekere faktore, soos die konsentrasie en organiese materiaal (chemiese suurstof vereiste) in die water, kan die doeltreffendheid van H2O2 behandeling beïnvloed. Verskillende H2O2 konsentrasies is geëvalueer (50, 350, 700 en 1000 mg.L-1) op twee E. coli isolate (M53 en W1371). Resultate dui daarop dat 50 mg.L-1 nie effektief was nie omdat minder as 1 log reduksie behaal is na 120 minute. Toe 350 en 700 mg.L-1 gebruik is, is soortgelyke log reduksies (1.78 – 2.27) teen verwagting in behaal. Die gebruik van 1000 mg.L-1 is as ‘n effektiewe behandeling beskou aangesien daar geen groei na 120 minute teenwoordig was nie. Escherichia coli isolaat W1371 besit EPEC virulensie faktore (potensiële patogeen). Dit is in die studie ingesluit ten einde te bepaal hoe ‘n isolaat met virulensie faktore sou reageer op H2O2. Escherichia coli W1371 is as weerstandbiedend teen die H2O2 behandeling beskou en log reduksies was soortgelyk aan die van M53 . Die katalase aktiwiteit van die E. coli isolate is bestudeer om te bepaal of ʼn skakel bestaan tussen katalase aktiwiteit en H2O2 weerstandbiedendheid. Alhoewel ‘n tendens waargeneem is tussen hitte-stabiele katalase aktiwiteit en H2O2 weerstandbiedendheid, was daar uitsonderings. Die gevolgtrekking was dat hoë katalase aktiwiteit nie altyd saamval met H2O2 weerstandbiedendheid nie en dat ander meganismes ook mag bydra tot E. coli oorlewing. In geheel is dit waargeneem dat daar sekere faktore is wat die doeltreffendheid van H2O2 as ‘n behandelingsmetode beïnvloed. Daar is gevind dat omgewingsisolate van E. coli in die algemeen meer weerstandbiedend is teenoor H2O2 behandeling in vergelyking met ATCC E. coli isolate. Dit moet in ag geneem word wanneer H2O2 of ander chemiese ontsmettingsmiddels oorweeg word as ʼn behandelingsopsie.

Page generated in 0.1287 seconds