• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 434
  • 67
  • 61
  • 27
  • 18
  • 15
  • 12
  • 12
  • 12
  • 12
  • 12
  • 11
  • 3
  • 2
  • 1
  • Tagged with
  • 805
  • 805
  • 166
  • 101
  • 101
  • 99
  • 99
  • 99
  • 95
  • 93
  • 92
  • 89
  • 78
  • 76
  • 71
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Die rol van metaboliese beheermeganismes in Acinetobacter spp met betrekking tot fosfaatverwydering deur die geaktiveerdeslykproses

Lotter, Laurraine Havelock 20 November 2014 (has links)
Ph.D. (Biochemistry) / Please refer to full text to view abstract
212

Polyethersulfone (PES) membrane embedded with Fe/Ni nanoparticles decorated-carbon nanotubes (CNTs) for degradation of chlorinated organics in water

Thatyana, Maxwell 30 June 2015 (has links)
MSc. (Applied Chemistry) / Remediation of POPs particularly the chlorinated compounds in water is therefore crucial. This research work describes the modification of polyethersulfone (PES) thin-film membrane composite (TFC) with functionalised carbon nanotubes (f-CNTs) using the phase invasion method. The oxidised CNTs were successfully decorated with Zero-Valent (ZV) Fe/Ni nanoparticles for the adsorption and degradation studies of polychlorinated organic pollutants (in this case the dichlorodiphenyltrichloroethanes (DDTs)). The in situ modification procedure was carried out using different quantities (0.04 wt%, 0.1 wt% and 0.2 wt%) of Fe/Ni-f-CNTs nanohybrids dispersed in a DMAc solution and dipping the polyethersulfone powder into a suspension containing the Fe/Ni-f-CNTs to form a nano-composite membrane. The formed composite membrane characteristics were investigated with Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), atomic force microscopy (AFM), contact angle (CA) and X-ray diffraction spectroscopy (XRD). The incorporation of nanohybrid in the PES membrane was found to increase the surface smoothness and the hydrophilicity of the composites. In addition, there was an increase in the adsorption of DDTs with increase in the nano-hybrid loading as indicated by the adsorption studies using the Langmuir isotherm and Freundlich isotherm studies. The data obtained from the batch studies closely fitted with the Langmuir isotherm based on the characteristic parameter RL found to lie within the standard range 0 < RL < 1 .
213

Photocatalytic performance of nitrogen-platinum group metal co-doped Tio2 supported on carbon nanotubes for visible-light degradation of organic pollutants in water

Kuvarega, Alex Tawanda 24 July 2013 (has links)
D.Phil. (Chemistry) / Elimination of toxic organic compounds from wastewater is currently one of the most important subjects in water-pollution control. Among the many organic pollutants are dyes and emerging pollutants such as natural organic matter (NOM). Dyes such as Eosin Yellow (EY), an anionic xanthene fluorescent dye, can originate from many sources such as textile industrial processes, paper pulp industries and agricultural processes. Most dyes are problematic because they are resistant to conventional chemical or biological water-treatment methods and therefore persist in the environment. NOM consists of a highly variable mixture of products found in water and soils. NOM is formed as a result of the decomposition of plant and animal material and is a precursor to the formation of disinfection by-products (DBP) during water disinfection. These organic compounds cause undesirable colour, taste and odour in water. NOM affects the capacity of other treatment processes to effectively remove organic micro-pollutants or inorganic species that may be present in the water. Its removal also uses up chemicals and energy and so it is expensive to treat. Titanium dioxide (TiO2) has emerged as one of the most fascinating materials in the modern era due to its semiconducting and catalytic properties. TiO2 is a large band-gap semiconductor that exists mainly in the anatase (band gap 3.2 eV) and rutile (band gap 3.0 eV) phases. Its response to UV light has led to increased interest in its application in the photocatalysis research field. It has been investigated extensively for its super hydrophilicity and use in environmental remediation and solar fuel production. In spite of extensive efforts to apply TiO2 for environmental remediation, photocatalytic activity in the visible region has remained quite low hence the ultimate goal of this research was to fabricate highly photoactive catalysts composed of non-metal, platinum-group metal (PGM) co-doped TiO2 and carbon nanotubes (CNTs) and to apply them for water purification using solar radiation...
214

Functionalized synthetic-and bio-sorbents for removal of inorganic and organic contaminants in water

Mwangi, Isaac Waweru 25 July 2013 (has links)
D.Phil. (Chemistry) / This thesis describes the improvement of sorption capacity and efficiency of synthetic and biological adsorbents towards selected pollutants by introducing functional groups on the sorbents. Functionalization was achieved by chemically modifying the binding sites of the studied adsorbents. The sorbent materials considered were chemical resins (Amberlite XAD 1180) and biomass (maize tassels and seaweed). The adsorbents were modified with ethylenediamine in order to improve their capacity for extraction of heavy metals, namely lead, copper and cadmium from water. For the removal of phenols from water, maize tassels was modified with polydiallyldimethylammonium chloride (polyDADMAC). The main focus of the proposed study was to formulate cheap and sustainable ways of purifying contaminated water by exploiting the pollutants’ affinity towards the adsorbents. Parameters such as contact time, sorbent quantities, analyte concentrations, desorption solution (for stripping adsorbed metals for sorbent reuse) and pH were optimized. Different isotherms were applied on the experimental data to establish sorption mechanisms and energies involved during the sorption process. The Langmuir isotherm was used to test for monolayer sorption while the Freundlich model tested multilayer adsorption on heterogeneous surfaces...
215

The Rhodes BioSURE process and the use of sustainability indicators in the development of biological mine water treatment

Neba, Alphonsus January 2007 (has links)
Polluted waters, arising from extensive past and ongoing mining operations in South Africa, pose serious environmental threats to the limited fresh water resource. The long time periods, of decades to centuries, over which decanting mine waters may be expected to flow raises additional concerns about the sustainability of these resources. Responses to the problem have thus increasingly been directed towards the long-term sustainability of mine water treatment technologies (MWTT) as a critical indicator in both their research and development, and application. Bioprocess treatments have been considered in this regard and, among these, the Rhodes BioSURE Process has been investigated in preliminary studies using complex organic carbon wastes as the carbon source and electron donor for the central sulphate reduction unit operation. Although both the mining industry and the related statutory/regulatory authority in South Africa share public commitment to sustainability in the treatment of mine waters, no systematic mechanism has emerged to enable the application of sustainability thinking as a guiding principle in the selection and application of MWTTs, nor in the research and development undertaking. This study undertook the development of a Sustainability Indicator Framework in order to provide a systematic basis for the incorporation of sustainability objectives in MWTT bioprocess development, and specifically to use this framework as an input to the investigation of the scaleup development of the Rhodes BioSURE Process. In the development of the MWTT Sustainability Indicator Framework, an initial survey of industry thinking in this area was undertaken and, based on these outcomes, a detailed questionnaire methodology was developed in order to identify and quantify critical sustainability indicators. These included analysis of environmental, economic, social and technical indicators used in sustainability accounting practice in the industry. Statutory/regulatory sustainability targets in the same categories were derived from State of the Environment Reports (SoER) from Provincial authorities where mining is undertaken in South Africa. A synthesis of industry and SoER values was derived from weighted averages and the Sustainability Indicator Framework based on these outcomes. A Conceptual Decision-Support System, to guide the selection and development of MWTTs, was proposed and also based on these results. In the development of the Rhodes BioSURE Process the use of primary sludge (PS) had been investigated as a potential complex carbon and electron donor source. In this regard the utility operator, and sewage treatment process infrastructure, was identified as potentially meeting aspects of the sustainability objectives identified for MWTT application development. Both the Sustainability Indicator Framework and the Conceptual Decision-Support System provided inputs in the formulation of the experimental programme relating to the scale-up development of the Rhodes BioSURE Process. Based on these outcomes, a series of single- and multi-stage reactor configuration, optimisation and enzymology studies were undertaken at bench-, pilot- and technical-scale operations. These units were operated at hydraulic retention times (HRT) ranging between 22 to 72 hours and at chemical oxygen demand to sulphate ratios (COD:SO[subscript 4]) ranging between 1:1 to 2:1. Studies undertaken in fed-batch, bench-scale reactors confirmed the preliminary feasibility of using established sewage treatment infrastructure as a replacement for novel reactor configurations that had been used in the initial studies. The results further indicated that the hydrolysis of PS occurred at different rates under biosulphidogenic conditions in the different reactor configurations investigated. Scale-up of these findings in multi-stage pilot- (7.4m[superscript 3]) and technical-scale plants (680m[superscript 3]) showed comparable performances between the unit operations in terms of SO[subscript 4] and COD removal. These results indicated no apparent advantages in the uncoupling of hydrolysis and sulphate reduction in separate unit operations as had been suggested in previous studies. Scale-down/scale-up studies were undertaken in a continuously fed single-stage reactor configuration and showed that the process could be effectively operated in this way. Previous proposals that chemical and biological gradients established in the sludge bed of the Recycling Sludge Bed Reactor (RSBR) exercised an influence on the rates of substrate hydrolysis were investigated and the relative activity of α- and β-glucosidase and protease enzymes was measured. Results provided additional support for this hypothesis and it was shown that enzyme assay may also provide a useful tool in process development and monitoring studies. While sulphide recovery, following the sulphate reduction step in the BioSURE Process, was not investigated as a component of this study, the treatment of final effluent or waste spills was identified as an important sustainability requirement given the toxicity of sulphide to human and ecosystem environments. A conventional trickle filter reactor system was evaluated for this purpose and showed close to 100% oxidation to sulphate in a short contact time operating regime. Although residual COD removal was low at ~20% of influent, it is considered that high rate recycle biofilter operation could achieve the COD discharge standard of 75 mg/l. The results of the above studies provided inputs into the design, construction and commissioning of the first full-scale commercial application of the Rhodes BioSURE Process for mine wastewater treatment using sewage sludge as the carbon and electron donor source. An adjacent mine and sewage works have been linked by pipeline and an operational capacity of 10 Ml/day water treated has been established with sulphate reduced from ~1300mg/l to <200mg/l. These developments constitute a novel contribution in the mine waste water treatment field.
216

Investigation of the effect of structure on reactivity in the titanium dioxide mediated photodecomposition of phenols and haloethers when irradiated at 350 NM in an aqueous medium

Cardona, Claudia 02 November 1994 (has links)
Three studies were performed to obtain fundamental mechanistic information on the TiO2 catalyzed photooxidations of organic substrates irradiated at 350 nm in dilute aqueous solutions under oxygenated conditions: (a) The photodecomposition of three haloethers, 2-chloroethyl ether, 4-chlorophenyl phenyl ether, and 4-bromophenyl phenyl ether, was investigated in an aqueous media at pH 7.0. (b) A comparative study of structure-reactivity was conducted on para-substituted phenols whose substituents range from electron-withdrawing to electron-donating in an aqueous media at pH 3.0. (c) The initial rates of the TiO2 catalyzed photodegratation of phenol were studied in an aqueous media at pH 1.0, 3.0, 5.0, 7.0, 9.0, 11.0, and 13.7 and a pH effect profile was obtained and compared to the removal efficiency after four hours of irradiation. Controls were carried out throughout the three studies in the absence of light and under anoxic conditions, as well as without the semiconductor to evaluate the role of photolysis. The Langmuir-Hinshelwood model was employed in an attempt to characterize and evaluate differences in reactivity.
217

Preparation of photocatalytic TiO₂ nanoparticles immobilized on carbon nanofibres for water purification

Nyamukamba, Pardon January 2011 (has links)
Titanium dioxide nanoparticles were prepared using the sol-gel process. The effect of temperature and precursor concentration on particle size was investigated. The optimum conditions were then used to prepare carbon and nitrogen doped titanium dioxide (TiO2) nanoparticles. Doping was done to reduce band gap of the nanoparticles in order to utilize visible light in the photocatalytic degradation of organic compounds. A significant shift of the absorption edge to a longer wavelength (lower energy) from 420 nm to 456 nm and 420 nm to 428 nm was observed for the carbon doped and nitrogen doped TiO2 respectively. In this study, the prepared TiO2 photocatalyst was immobilized on carbon nanofibres to allow isolation and reuse of catalyst. The photocatalytic activity of the catalyst was tested using methyl orange as a model pollutant and was based on the decolourization of the dye as it was degraded. The doped TiO2 exhibited higher photocatalytic activity than the undoped TiO2. The materials prepared were characterized by XRD, TEM, SEM, FT-IR, DSC and TGA while the doped TiO2 was characterized by XPS, ESR and Raman Spectroscopy.
218

Biodegradable polymer composites : synthesis, properties and application in water purification

Vilakati, Gcina Doctor 02 May 2012 (has links)
M.Sc. / The addition of lignocellulosic fibres to thermoplastic polymers is known to increase the toughness of the polymers but it compromises the tensile strength. On the other hand, inorganic fillers like TiO2 are known to improve the tensile strength of polymers. These plant fibres have been used as adsorbents of metal pollutants in water. Best results were obtained when such materials were ground to fine powder but due to low density, the fibres float and form aggregates in water. Being highly biodegradable in nature makes plant fibres unsuitable for water treatment over lengthy periods of time. They cannot be used as standalone materials. Mixing these adsorbents with polymers, which cannot only act as support for the adsorbents but also disperse the fibres within it thus preventing leaching, is a cause for concern. This study was aimed at fabricating plant fibre-polymer composites that will have improved mechanical and thermal properties. These composites were to be tested for their ability to be used as metal ion adsorbents. The composites were fabricated using a melt-mix compounding method. Two thermoplastic polymers, EVA and PCL were each mixed with either lignin or SCB and TiO2 in different ratios. A rheomex mixer coupled with a single screw extruder which was attached to a sheet die was used to synthesise the composites. TGA and DSC were used for thermal propagation while the mechanical properties were investigated using an instron. Metal ion adsorption measurements were analysed using an atomic absorption spectrometer (AAS). These adsorbents were used to remove Cr(VI), Cr(III) and Pb(II), varying different environmental parameters like pH, concentration, time and adsorbent at constant temperature. The reinforcing effect of both lignin and SCB resulted to poor thermal and mechanical properties. This was shown by a decrease in onset degradation temperature and the tensile and toughness of the composites compared to the neat polymers. The incorporation of TiO2 on SCB-EVA composites, however, improved the mechanical strength and resulted in a thermally stable composite compared to counterpart composites without TiO2. This observation was surpassed at high filler loading as the addition of TiO2 resulted in a decrease of the properties. For the tensile strength, neat EVA recorded 11.35 MPa while 2% TiO2-EVA registered 12.49 MPa for example. For the same composite, the onset degradation temperature for EVA was 353 oC but shifted to 368 oC after the addition of TiO2. At higher filler loading, no effect was observed when adding TiO2.
219

Pulseback of panel bed contactor for carbon and water

Yang, Jyh-Shing January 1982 (has links)
A method for removing chemical contaminants, such as phenol, from a stream of waste water has been proposed. The method uses a device for contacting water with activated carbon, called a "panel bed". In this device, water flows across a bed of activated carbon retained within a set of parallel louvers. Construction permits contaminants in the entering stream of water to be adsorbed on carbon particles, starting from the entrances of the spaces between the louvers. A pulseback technique is used to remove the region containing "contaminated" activated carbon. Pulseback is applied periodically after appropriate intervals of operation. This research aims to determine operating characteristics of a panel bed and focuses on the study of pulseback. From a previous design of a panel bed filter for removing fly ash from stack gases, and from a basic study of characteristics of activated carbon adsorption isotherms, a panel bed was constructed which was believed to be suitable for contacting activated carbon with waste water. Pulseback consists of a reverse transient flow of water across the panel bed of activated carbon. Detailed descriptions of pulseback equipment, data on the spill of carbon that accompanies pulseback, and correlation of the carbon spill data are included. The carbon spill during pulseback appears to correlate with "active time", where this term refers to the time during which a reverse pressure difference, created by the reverse transient flow of water, exceeds a critical minimum value necessary for any spill at all to occur. For the specific design of equipment used in this study, the spill is relatively small if the active time is less than 60 milliseconds. Beyond 60 milliseconds, for the specific equipment used, the spill is linear with active time, and occurs at a rate that appears related to Zenz's modification of the Francis weir formula to describe efflux of solids from a static bed through an opening. / Master of Science
220

The mechanism for free chlorine oxidation of reduced manganese in mixed-media filters

Occiano, Suzanne 01 August 2012 (has links)
The removal mechanisms of soluble manganese [Mn (1l)] through mixed-media filters were investigated. Experimentation was directed toward the continuous supply of an oxidant during column filter studies. Free chlorine (HOCl, OC1â ) was chosen to increase soluble manganese removal efficiency because chlorine is readily available and inexpensive. Filter media from four different water treatment plants were used in this study. Continuous-flow filter columns were operated in the presence and absence of 2.0 milligrams per Liter (mg/ L) free chlorine. Maintaining constant influent manganese concentrations of 1.0 mg/L and flow rates of 2.5 gallons per minute per foot squared (gpm/ft2), the operational pH values of 6-6.2, 7.8 and 8.8 were investigated. Results indicate that a continuous feed of free chlorine (2 mg/L) applied to the filter columns could increase manganese (II) removal efficiency. However, the amount and oxidation state of the MnOx(S) surface coating initially on the media and the influent pH had major influences upon the uptake of soluble manganese. From numerous Mn (II) uptake studies with different media and varying pH conditions, oxide-coated filter media continuously regenerated with free chlorine could result in increased soluble manganese removal through adsorption upon the MnOx(s) surface coating and subsequent oxidation directly on the media surface. The relationships of manganese removal and chlorine consumed were also explored. To further investigate the mechanisms of free chlorine oxidation for the removal of reduced manganese, pH 5.0 backtitrations were conducted following exhaustion of the filter media. The exposure of such low pll conditions to columns operated in the presence and absence of HOCI would ascertain if oxidation of the adsorbed Mn²⁺ was always occurring, regardless of an oxidant feed. Results indicated that in the absence of HOCI, the mechanisms for manganese removal on oxide-coated filter media were adsorption only. With the additional of HOCI, the adsorbed Mn²⁺ is oxidized directly on the surface of the media, thereby, continuously regenerating the surface oxide coating. Additional work was begun to ascertain if free chlorine could be used as a viable alternative to potassium permanganate (KMnO₄) regeneration of oxide-coated filter media. Preliminary findings indicate from column cycling experiments that free chlorine could be used to regenerate oxide-coated filter media prior to backwashing. / Master of Science

Page generated in 1.2795 seconds