• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Calibration of water content reflectometer in Rocky Mountain arsenal soil

Tang, Yucao 2009 August 1900 (has links)
This paper describes how water content reflectometers (WCRs) were analyzed to develop a calibration equation. Time domain reflectometry (TDR) technique is the most prevalent method in in-situ moisture monitoring; and WCR is a type of low frequency TDR sensors, which is sensitive to soil type. Developing soil-specific calibration and investigating different environmental effects on WCR calibration is important. This study focused on investigation of the soil dry density and temperature effects on WCR calibration in RMA soil. Two series of tests to develop soil-specific calibration with dry density and temperature offset were conducted. Results from testing program showed that WCR response was positive related to volumetric water content, dry density, and temperature. Equations were developed to illustrate the response-density-temperature-moisture relation. Application to a field site was also presented to illustrate the difference in volumetric water contents obtained by using manufacturer method and the calibration procedure drawn in this paper. / text
2

Water and Heat Transport in Road Structures : Development of Mechanistic Models

Hansson, Klas January 2005 (has links)
<p>The coupled transport of water and heat, involving freezing and thawing, in the road structure and its immediate environment is important to consider for optimal design and maintenance of roads and when assessing solute transport, of e.g. de-icing salt, from roads. The objective of this study was to develop mechanistic models, and measurement techniques, suitable to describe and understand water flow and heat flux in road structures exposed to a cold climate. </p><p>Freezing and thawing was accounted for by implementing new routines in two numerical models (HYDRUS1D/2D). The sensitivity of the model output to changes in parameter values and operational hydrological data was investigated by uncertainty and sensitivity analyses. The effect of rainfall event characteristics and asphalt fractures on the subsurface flow pattern was investigated by scenario modelling. The performance of water content reflectometers (WCR), measuring water content, was evaluated using measurements in two road structure materials. A numerical model was used to simulate WCR sensor response. The freezing/thawing routines were stable and provided results in agreement with laboratory measurements. Frost depth, thawing period, and freezing-induced water redistribution in a model road was greatly affected by groundwater level and type of subgrade. The simulated subsurface flow patterns corresponded well with published field observations. A new method was successful in enabling the application of time domain reflectometer (TDR) calibration equations to WCR output. The observed distortion in sampling volume for one of the road materials could be explained by the WCR sensor numerical model. Soil physical, hydrological, and hydraulic modules proved successful in simulating the coupled transport of water and heat in and on the road structure. It was demonstrated in this thesis that numerical models can improve the interpretation and explanation of measurements. The HYDRUS model was an accurate and pedagogical tool, clearly useful in road design and management.</p>
3

Water and Heat Transport in Road Structures : Development of Mechanistic Models

Hansson, Klas January 2005 (has links)
The coupled transport of water and heat, involving freezing and thawing, in the road structure and its immediate environment is important to consider for optimal design and maintenance of roads and when assessing solute transport, of e.g. de-icing salt, from roads. The objective of this study was to develop mechanistic models, and measurement techniques, suitable to describe and understand water flow and heat flux in road structures exposed to a cold climate. Freezing and thawing was accounted for by implementing new routines in two numerical models (HYDRUS1D/2D). The sensitivity of the model output to changes in parameter values and operational hydrological data was investigated by uncertainty and sensitivity analyses. The effect of rainfall event characteristics and asphalt fractures on the subsurface flow pattern was investigated by scenario modelling. The performance of water content reflectometers (WCR), measuring water content, was evaluated using measurements in two road structure materials. A numerical model was used to simulate WCR sensor response. The freezing/thawing routines were stable and provided results in agreement with laboratory measurements. Frost depth, thawing period, and freezing-induced water redistribution in a model road was greatly affected by groundwater level and type of subgrade. The simulated subsurface flow patterns corresponded well with published field observations. A new method was successful in enabling the application of time domain reflectometer (TDR) calibration equations to WCR output. The observed distortion in sampling volume for one of the road materials could be explained by the WCR sensor numerical model. Soil physical, hydrological, and hydraulic modules proved successful in simulating the coupled transport of water and heat in and on the road structure. It was demonstrated in this thesis that numerical models can improve the interpretation and explanation of measurements. The HYDRUS model was an accurate and pedagogical tool, clearly useful in road design and management.

Page generated in 0.119 seconds