Spelling suggestions: "subject:"low patterns"" "subject:"flow patterns""
1 |
On the Interaction between the Synoptic-Scale Eddies and the Pacific North American Flow PatternKlasa, Marc January 1994 (has links)
No description available.
|
2 |
The linear study of zonally asymmetric barotropic flowsZhang, Z. January 1988 (has links)
No description available.
|
3 |
Unsaturated Flow Analysis of Heap Leach SoilsSilver, Richard January 2013 (has links)
Thesis advisor: Alan Kafka / Heap leach flow patterns are governed by hydrogeological parameters including, soil properties, saturated and unsaturated hydraulic conductivity, initial degree of saturation, and the method of irrigation. Optimizing production during leaching cycles requires knowledge of the hydrogeological parameters of the leach heap, and their effect on flow behavior. This thesis research involved quantifying the flow rates of unsaturated homogenous soil profiles. Finite element numerical modeling has been utilized to simulate 1-dimensional unsaturated transient vertical flow. A series of parametric studies were conducted to examine how various soil properties and differing initial and boundary conditions affect percolation and flow. Results indicate that flow and percolation are increased or impeded based on the saturated and unsaturated parameters of the soil profile. Sensitivity analysis illustrates that the initial degree of saturation affects hydraulic behaviour relative to soil hydraulic conductivity, matric potential (negative pressure head), and the method of irrigation. At the initial stage of the research, some analyses indicated that numerical instabilities may occur within simulations due to selected mesh density, initial time step length, error tolerance, and the selected form of the unsaturated Richards Equation. / Thesis (MS) — Boston College, 2013. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Earth and Environmental Sciences.
|
4 |
Flooding in a vertical tubeMcNeil, D. A. January 1986 (has links)
No description available.
|
5 |
Reproducing and Quantifying Spatial Flow Patterns of Ecological Importance with Two-Dimensional Hydraulic ModelsCrowder, David Willis 20 November 2002 (has links)
Natural streams typically have highly complex flow patterns. Velocity gradients, circulation zones, transverse flows, and other flow patterns are created in the presence of topographic features (e.g. exposed boulders, bars). How flow complexity influences a stream's ecological health and morphological stability, as well as how flow complexity responds to changes in hydrologic conditions, is poorly understood. One-dimensional (1-D) hydraulic models and two-dimensional (2-D) models that do not explicitly incorporate meso-scale topographic features are not capable of adequately reproducing the flow patterns found in channels having complex topography. Moreover, point measurements of depth and velocity, which are used to describe hydraulic conditions in habitat suitability studies, cannot be used to characterize spatially varying flow patterns of biological importance.
A general methodology for incorporating meso-scale topography into 2-D hydraulic models is presented. The method provides a means of adequately reproducing spatial flows of interest to riverine researchers. The method is developed using 2-D model simulations of a reach of the North Fork of the Feather River in California. Specifically, the site is modeled with and without bathymetry data on exposed boulders found within the site. Results show that the incorporation of boulder topography and an adequately refined mesh are necessary for reproducing velocity gradients, transverse flows, and other spatial flows.
These simulations are also used to develop and evaluate three spatial hydraulic metrics designed to distinguish between locations having uniform and non-uniform flow conditions. The first two metrics describe local variations in energy/velocity gradients, while the third metric provides a measure of the flow complexity occurring within an arbitrary area. The metrics based on principles of fluid mechanics (kinetic energy, vorticity, and circulation) can be computed in the field or with 2-D hydraulic model results. These three metrics, used in conjunction with detailed 2-D hydraulic model results, provide engineers, biologist, and water resource managers a set of tools with which to evaluate the importance of flow complexity within rivers. A conceptual model describing how such a tool can be used to help design channels being restored, better evaluate stream habitat, and evaluate how hydrologic changes in a watershed impact hydraulic conditions and concomitant habitat conditions is provided. / Ph. D.
|
6 |
Single-phase flow and flow boiling of water in horizontal rectangular microchannelsMirmanto January 2013 (has links)
The current study is part of a long term experimental project devoted to investigating single-phase flow pressure drop and heat transfer, flow boiling pressure drop and heat transfer, flow boiling instability and flow visualization of de-ionized water flow in microchannels. The experimental facility was first designed and constructed by S. Gedupudi (2009) and in the present study; the experimental facility was upgraded by changing the piping and pre-heaters so as to accommodate the objectives of the research. These objectives include (i) modifying the test rig, to be used for conducting experiments in microchannels in single and two-phase flow boiling heat transfer, pressure drop and visualization, (ii) redesign metallic single microchannels using copper as the material. The purpose of the redesign is to provide microchannels with strong heaters, high insulation performance and with test sections easy to dismantle and reassemble, (iii) obtaining the effect of hydraulic diameter on single-phase flow, flow pattern, heat transfer and pressure drop, (iv) studying the effects of heat flux, mass flux,and vapour quality on flow pattern, flow boiling heat transfer and pressure drop, (v)comparing experimental results with existing correlations. However, the main focus in this present study is to investigate the effects of hydraulic diameter, heat flux, mass flux and vapour quality on flow pattern, flow boiling heat transfer coefficient and pressure drop. In addressing (iii) many possible reasons exist for the discrepancies between published results and conventional theory and for the scatter of data in published flow boiling heat transfer results: 1. Accuracy in measuring the dimensions of the test section, namely the width, depth and length and in the tested variables of temperature, pressure, heat flux and mass flux. 2. Variations in hydraulic diameter and geometry between different studies. 3. Differences in working fluids. 4. Effects of hydrodynamic and thermal flow development 5. Inner surface characteristics of the channels. Three different hydraulic diameters of copper microchannels were investigated: 0.438mm, 0.561 mm and 0.635 mm. For single-phase flow the experimental conditions included mass fluxes ranging from 278 – 5163 kg/m2 s, heat fluxes from 0 - 537 kW/m², and inlet temperatures of 30, 60 and 90°C. In the flow boiling experiments the conditions comprised of an inlet pressure of 125 kPa (abs), inlet temperature of 98°C (inlet sub-cooling of 7 K), mass fluxes ranging from 200 to 1100 kg/m²s, heat fluxes ranging from 0 to 793 kW/m² and qualities up to 0.41. All measurements were recorded after the system attained steady states. The single-phase fluid flow results showed that no deviation of friction factors was found from the three different hydraulic diameters. The effect of fluid temperature on friction factor was insignificant and the friction factors themselves were in reasonable agreement with developing flow theory. The typical flow patterns observed in all three test sections were bubbly, slug/confined churn and annular, however, based on the observation performed near the outlet, the bubbly flow was not detected. The effects of mass flow and hydraulic diameter on flow pattern for the three test sections investigated in the range of experimental conditions were not clear. The single-phase heat transfer results demonstrated that smaller test sections result in higher heat transfer coefficients. However, for heat transfer trends presented in the form of Nusselt number versus Reynolds number, the effect of hydraulic diameter was insignificant.The flow boiling experiments gave similar heat transfer results; they exhibited that the smaller hydraulic diameter channels resulted in higher heat transfer coefficients. The nucleate boiling mechanism was found for all three test sections, evidenced by the significant effect of heat flux on the local heat transfer coefficient. Moreover, the heat flux had a clear effect on average heat transfer coefficient for the 0.561 mm and 0.635mm test sections, whilst for the 0.438 mm test section, there was no discernible effect. At the same heat flux, increases in mass flux caused heat transfer coefficients to decrease. This could be due to the decrease of pressure inside the test section. When a higher mass flux was tested, the inlet pressure increased, and in reducing the inlet pressure to the original value, a decrease in system pressure resulted. Consequently, the outlet pressure and local pressure became lower. Existing flow pattern maps, flow boiling heat transfer and pressure drop correlations were compared with the experimental results obtained for all three test sections. The comparison showed that the flow pattern map proposed by Sobierska et al. (2006) was the most successful in predicting the experimental data. The local heat transfer coefficient data were compared with existing published correlations. The correlations of Yu et al. (2002), Qu and Mudawar (2003) and Li and Wu (2010) are found to predict the current local heat transfer coefficient better than other correlations tested. Pressure drop results showed that as the heat flux and mass flux were increased, the two-phase pressure drop increased too. These were due to the increase in bubble generations and the inertia momentum effect. As the channel was reduced, the twophase pressure drop increased because the pressure drop related inversely with the channel hydraulic diameter. The pressure and pressure drop fluctuations were indentified in this project, however, the maximum pressure fluctuation was found in the 0.438 mm channel whilst the minimum fluctuation was attained in the 0.561 mm channel. This indicated that the effect of decreasing in hydraulic diameter on pressure and pressure drop fluctuations is not clear and needs to be investigated further. The two-phase pressure drop data were compared with selected correlations. The Mishima and Hibiki (1996)’s correlation was found to predict the current two-phase pressure drop better than the other correlations examined in this study.
|
7 |
Open-source Workflow Evaluation : An evaluation of the Activiti BPM PlatformNilsson, Mikael January 2012 (has links)
No description available.
|
8 |
The application of signal analysis techniques based on chaos theory to flow regime identificationRawes, W. January 1996 (has links)
No description available.
|
9 |
Development of improved mathematical models for the design and control of gas-fired furnacesCorreia, Sara Alexandra Chanoca January 2001 (has links)
No description available.
|
10 |
Positron emission particle tracking (PEPT): A novel approach to flow visualisation in lab-scale anaerobic digestersSindall, R.C., Dapelo, Davide, Leadbeater, T., Bridgeman, John 24 February 2017 (has links)
Yes / Positron emission particle tracking (PEPT) was used to visualise the flow patterns
established by mixing in two laboratory-scale anaerobic digesters fitted with mechanical
mixing or gas mixing apparatus. PEPT allows the visualisation of flow patterns within a
digester without necessitating the use of a transparent synthetic sludge. In the case of the
mechanically-mixed digester, the mixing characteristics of opaque sewage sludge was
compared to a transparent synthetic sludge at different mixing speeds. In the gas-mixed
apparatus, two synthetic sludges were compared. In all scenarios, quasi-toroidal flow paths
were established. However, mixing was less successful in more viscous liquids unless mixing
power was increased to compensate for the increase in viscosity. The robustness of the
PEPT derived velocities was found to be significantly affected by the frequency with which
the particle enters a given volume of the vessel, with the accuracy of the calculated velocity
decreasing in regions with low data capture. Nevertheless, PEPT was found to offer a means
of accurate validation of computational fluid dynamics models which in turn can help to
optimise flow patterns for biogas production. / The first author was funded via an EPSRC CASE award in conjunction with Severn Trent Water. The second author was funded via a University of Birmingham Postgraduate Teaching Assistantship award.
|
Page generated in 0.076 seconds