Spelling suggestions: "subject:"sas mixing"" "subject:"suas mixing""
1 |
Evaluation of an Exhaust Gas Mixing Duct for Off-road Diesel After-treatment Systems Using Numerical MethodsPong, Henry 27 November 2013 (has links)
Due to strong motivation to reduce costs and increase performances of stationary diesel after-treatment systems, computational modeling has become a necessary step in system design and improvement. A unique mixing duct typified by significant changes in scale and strong flow curvature was evaluated for its potential to improve flow distribution across the SCR catalyst inlet face. The flow dynamics were investigated with a steady three-dimensional turbulence model and detailed chemistry was studied separately using a one-dimensional channel reactive flow model. Aqueous urea injection was modeled using Discrete Phase Modeling. The mixing duct performance relative to reactor dimensions and engine loads is discussed. The Impact of injector positions was studied using massless particle tracking. A total of three geometries were evaluated using a Uniformity Index of the ammonia-to-NOx feed ratio. It was found that a higher mixing duct height to inlet diameter ratio yielded better mixing.
|
2 |
Evaluation of an Exhaust Gas Mixing Duct for Off-road Diesel After-treatment Systems Using Numerical MethodsPong, Henry 27 November 2013 (has links)
Due to strong motivation to reduce costs and increase performances of stationary diesel after-treatment systems, computational modeling has become a necessary step in system design and improvement. A unique mixing duct typified by significant changes in scale and strong flow curvature was evaluated for its potential to improve flow distribution across the SCR catalyst inlet face. The flow dynamics were investigated with a steady three-dimensional turbulence model and detailed chemistry was studied separately using a one-dimensional channel reactive flow model. Aqueous urea injection was modeled using Discrete Phase Modeling. The mixing duct performance relative to reactor dimensions and engine loads is discussed. The Impact of injector positions was studied using massless particle tracking. A total of three geometries were evaluated using a Uniformity Index of the ammonia-to-NOx feed ratio. It was found that a higher mixing duct height to inlet diameter ratio yielded better mixing.
|
3 |
Positron emission particle tracking (PEPT): A novel approach to flow visualisation in lab-scale anaerobic digestersSindall, R.C., Dapelo, Davide, Leadbeater, T., Bridgeman, John 24 February 2017 (has links)
Yes / Positron emission particle tracking (PEPT) was used to visualise the flow patterns
established by mixing in two laboratory-scale anaerobic digesters fitted with mechanical
mixing or gas mixing apparatus. PEPT allows the visualisation of flow patterns within a
digester without necessitating the use of a transparent synthetic sludge. In the case of the
mechanically-mixed digester, the mixing characteristics of opaque sewage sludge was
compared to a transparent synthetic sludge at different mixing speeds. In the gas-mixed
apparatus, two synthetic sludges were compared. In all scenarios, quasi-toroidal flow paths
were established. However, mixing was less successful in more viscous liquids unless mixing
power was increased to compensate for the increase in viscosity. The robustness of the
PEPT derived velocities was found to be significantly affected by the frequency with which
the particle enters a given volume of the vessel, with the accuracy of the calculated velocity
decreasing in regions with low data capture. Nevertheless, PEPT was found to offer a means
of accurate validation of computational fluid dynamics models which in turn can help to
optimise flow patterns for biogas production. / The first author was funded via an EPSRC CASE award in conjunction with Severn Trent Water. The second author was funded via a University of Birmingham Postgraduate Teaching Assistantship award.
|
4 |
Euler-Lagrange CFD modelling of unconfined gas mixing in anaerobic digestionDapelo, Davide, Alberini, F., Bridgeman, John 06 September 2015 (has links)
Yes / A novel Euler-Lagrangian (EL) computational
uid dynamics (CFD) nite
volume-based model to simulate the gas mixing of sludge for anaerobic digestion is
developed and described. Fluid motion is driven by momentum transfer from bubbles
to liquid. Model validation is undertaken by assessing the
ow eld in a labscale model
with particle image velocimetry (PIV). Conclusions are drawn about the upscaling
and applicability of the model to full-scale problems, and recommendations are given
for optimum application.
|
5 |
Modeling of Fuel Dynamics in a Small Two-Stroke Engine Crankcase / Modellering av bränsledynamik i vevhuset för en liten tvåtaktsmotorAndersson, Johan, Wyckman, Oscar January 2015 (has links)
For any crankcase scavenged two-stroke engine, the fuel dynamics is not easily predicted. This is due to the fact that the fuel has to pass the crankcase volume before it enters the combustion chamber. This thesis is about the development of a model for fuel dynamics in the crankcase of a small crankcase scavenged two-stroke engine that gives realistic dynamic behavior. The crankcase model developed in this thesis has two parts. One part is a model for wall wetting and the other part is a model for concentration of evaporated fuel in the crankcase. Wall wetting is a phenomenon where fuel is accumulated in fuel films on the crankcase walls. The wall wetting model has two parameters that have to be tuned. One is for the fraction of fuel from the carburetor that is not directly evaporated and one parameter is for the evaporation time of the fuel film. The thesis treats tuning of these parameters by running the model with input data from measurements. Since not all input data are possible to measure, models for these inputs are also needed. Hence, development of simple models for air flows, fuel flow, gas mixing in the exhaust and the behavior of the λ-probe used for measurements are also treated in this thesis. The parameter estimation for the crankcase model made in this thesis results in parameters that corresponds to constant fraction of fuel from the carburetor that evaporates directly and a wall wetting evaporation rate that increases with increasing engine speed. The parameter estimation is made with measurements at normal operation and three specific engine speeds. The validity of the model is limited to these speeds and does not apply during engine heat-up. The model is run and compared to validation data at some different operation conditions. The model predicts dynamic behavior well, but has a bias in terms of mean level of the output λ. Since this mean value depends on the relation between input air and fuel flow, this bias is probably an effect of inaccuracy in the simple models developed for these flows. / För alla tvåtaktsmotorer med bränslematning genom vevhuset är bränsledynamiken svårpredikterad. Detta beror på att bränslet måste passera vevhusvolymen innan det når förbränningskammaren. Denna uppsats handlar om utveckling av en modell som ger realistisk dynamik för bränslet i tvåtaktsmotorers vevhus. Vevhusmodellen i denna uppsats har två delar. Den ena delen är en modell för bränslefilm på motorväggar och den andra delen är en modell för koncentration av förångat bränsle i vevhusvolymen. Bränslefilmsmodellen har två parametrar som måste trimmas. Den ena är andelen bränsle från förgasaren som inte förångas direkt och den andra är tidsåtgången för förångning av bränslefilmen. Uppsatsen behandlar trimning av dessa parametrar genom körning av modellen med indata från mätningar. Eftersom inte all indata kan mätas behövs även modeller för dessa. Därför behandlar uppsatsen även utveckling av enkla modeller för luftflöde, bränsleflöde, gasblandning i avgasvolymen och beteende hos den för mätningar använda λ-sonden. Parameterestimeringen för vevhusmodellen som är gjord i denna uppsats resulterar i parametrar som svarar mot konstant andel av bränslet från förgasaren som förångas direkt och en förångningshastighet för bränslefilmen som ökar med ökande motorhastighet. Parameterestimeringen är gjord med mätdata från normal körning vid tre olika motorhastigheter. Giltigheten för modellen är begränsad till dessa hastigheter och kan inte appliceras på körning av motorn vid kallstart. Modellen är körd och jämförd med valideringsdata från olika körfall. Modellen förutser dynamiska beteenden väl, men har ett systematiskt fel gällande medelvärdet på λ. Eftersom detta medelvärde beror på förhållandet mellan luftflöde och bränsleflöde in i vevhuset är sannolikt detta systematiska fel en effekt av osäkerhet i de enkla modeller som utvecklats för dessa flöden.
|
6 |
Advancing Cold Spray for Additive Manufacturing: A Study on Particle Morphology, Gas Nature, and Particle PreheatingMacDonald, Daniel Alexander 12 January 2023 (has links)
This investigation aims to understand and improve the deposition quality and rates of cold spray for additive manufacturing in a way that is economically sound and without the detrimental temperature effects seen in traditional metallic additive manufacturing processes. It focuses on materials that are desired by the additive manufacturing community and built upon the current knowledge in cold spray. This thesis is presented as a collection of published, or soon to be published, manuscripts accompanied by an introduction, literature review, and conclusion.
The effect of a non-spherical particle morphology was the first objective investigated. Titanium has been shown repeatedly to require pure helium at very high temperatures and pressures to get dense coatings, however, the unique coral-like morphology resulting from the Armstrong Process was revealed as a key to successful deposition with nitrogen. Using low pressure cold spray, under conditions that would be considered mild, a deposition efficiency of 100% and a porosity of nearly 0% was achieved. This is a promising approach for cold spray as a method for additive manufacturing of titanium parts. The low powder cost and the advantages of additive manufacturing could allow for a substantial cost savings in titanium part production when compared to traditional manufacturing methods. With these cost saving advantages, additive manufacturing of titanium using Armstrong process powder and CS could lead to a paradigm shift of titanium production, allowing titanium to enter markets that under traditional methods would be far too expensive.
Unfortunately, this unique powder morphology was not available in other materials. To address the low deposition efficiency of the other metals of interest, such as aluminum and stainless steel, the concept of mixing the propellant gas was introduced in the second objective. Considering the relative costs of gases, powder, electricity, and labour, the second paper focuses on the concept of optimizing the amount of helium to produce the minimum component cost. It was found that for the specific stainless steel and aluminum alloy powders discussed, costs could be reduced by 44% and 59%, respectively, using the gas mixing system. However, no cost saving was found for the most inexpensive of the powders, pure aluminum.
For gas mixing to be effective, the cost of helium must be offset by the cost of the powders. Therefore, low-cost powders, such as pure aluminum, results in pure nitrogen as the least expensive option. This however doesn’t address the low deposition efficiency that is preventing its adoption in cold spray additive manufacturing. The third objective addresses just this, an improvement in deposition efficiency without the introduction of expensive helium. In this study, aluminum particles were preheated using a novel particle preheater that does not clog. This resulted in a deposition efficiency increase of 260% with a minimal increase in electrical costs.
These three objectives, while studied and published separately, all relate to the purpose of this work to improve the process economics without detrimental temperature effects. These findings have been (or will be) published in international peer reviewed journals to add to the collective knowledge.
|
7 |
Experimental studies and CFD simulations of conical spouted bed hydrodynamicsWang, Zhiguo 11 1900 (has links)
Conical spouted beds have been commonly used for drying suspensions, solutions and pasty materials. They can also be utilized in many other processes, such as catalytic partial oxidation of methane to synthesis gas, coating of tablets, coal gasification and liquefaction, pyrolysis of sawdust or mixtures of wood residues.
The main objectives of this work include both the experimental research and mathematical modelling of the conical spouted bed hydrodynamics.
For experimental research, pressure transducers and static pressure probes were applied to investigate the evolution of the internal spout and the local static pressure distribution; optical fibre probes were utilized to measure axial particle velocity profiles and voidage profiles; the step tracer injection technique using helium as the tracer and thermal conductivity cells as detectors was used to investigate the gas mixing behaviour inside a conical spouted bed. It was found that many factors might affect calibration of the effective distance of an optical fibre probe. Therefore, a new calibration setup was designed and assembled, and a comprehensive sensitivity analysis was conducted to calibrate the optical probes used in this study.
For mathematical modelling, a stream-tube model based on the bed structure inside a conical spouted bed was proposed to simulate partial spouting states. By introducing an adjustable parameter, this model is capable of predicting the total pressure drop under different operating conditions, and estimating axial superficial gas velocity profiles and gauge pressure profiles.
A mathematical model based on characteristics of conical spouted beds and the commercial software FLUENT was also developed and validated using measured experimental data. The proposed new CFD model can simulate both stable spouting and partial spouting states, with an adjustable solids-phase source term. At stable spouting states, simulation results agree very well with almost all experimental data, such as static pressure profiles, axial particle velocity profiles, voidage profiles etc. A comprehensive sensitivity analysis was also conducted to investigate the effect of all possible factors on simulation results, including the fluid inlet profile, solid bulk viscosity, frictional viscosity, restitution coefficient, exchange coefficient, and solid phase source term.
The proposed new CFD model was also used successfully to simulate gas mixing behaviours inside a conical spouted bed, and simulate cylindrical packed beds as well as cylindrical fluidized beds in one code package.
|
8 |
Experimental studies and CFD simulations of conical spouted bed hydrodynamicsWang, Zhiguo 11 1900 (has links)
Conical spouted beds have been commonly used for drying suspensions, solutions and pasty materials. They can also be utilized in many other processes, such as catalytic partial oxidation of methane to synthesis gas, coating of tablets, coal gasification and liquefaction, pyrolysis of sawdust or mixtures of wood residues.
The main objectives of this work include both the experimental research and mathematical modelling of the conical spouted bed hydrodynamics.
For experimental research, pressure transducers and static pressure probes were applied to investigate the evolution of the internal spout and the local static pressure distribution; optical fibre probes were utilized to measure axial particle velocity profiles and voidage profiles; the step tracer injection technique using helium as the tracer and thermal conductivity cells as detectors was used to investigate the gas mixing behaviour inside a conical spouted bed. It was found that many factors might affect calibration of the effective distance of an optical fibre probe. Therefore, a new calibration setup was designed and assembled, and a comprehensive sensitivity analysis was conducted to calibrate the optical probes used in this study.
For mathematical modelling, a stream-tube model based on the bed structure inside a conical spouted bed was proposed to simulate partial spouting states. By introducing an adjustable parameter, this model is capable of predicting the total pressure drop under different operating conditions, and estimating axial superficial gas velocity profiles and gauge pressure profiles.
A mathematical model based on characteristics of conical spouted beds and the commercial software FLUENT was also developed and validated using measured experimental data. The proposed new CFD model can simulate both stable spouting and partial spouting states, with an adjustable solids-phase source term. At stable spouting states, simulation results agree very well with almost all experimental data, such as static pressure profiles, axial particle velocity profiles, voidage profiles etc. A comprehensive sensitivity analysis was also conducted to investigate the effect of all possible factors on simulation results, including the fluid inlet profile, solid bulk viscosity, frictional viscosity, restitution coefficient, exchange coefficient, and solid phase source term.
The proposed new CFD model was also used successfully to simulate gas mixing behaviours inside a conical spouted bed, and simulate cylindrical packed beds as well as cylindrical fluidized beds in one code package.
|
9 |
Calibration reduction in internal combustion engine fueling control: modeling, estimation and stability robustnessMeyer, Jason 27 July 2011 (has links)
No description available.
|
Page generated in 0.0559 seconds